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Interests – methods for wearable 

devices data

• Pattern identification and quantification 

• Accelerometry data preprocessing

• Physical activity digital measures

• R software development

Interests -- other statistical methods

• Power estimation in complex settings

• Regularization, change point detection
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Outline

• [16 min] The ADEPT pattern-recognition method with application to walking stride 

segmentation from raw accelerometry data

• [12 min] Harmonization of accelerometry-based measures of physical activity

• [12 min] The upstrap for power and sample size estimation in complex models 



Accelerometry data in health research
• Wearable monitors allow for non-invasive, 

objective monitoring of human motor activity 

• Accelerometer measures acceleration [g] 
along three orthogonal axes

• Accelerometry data 

• Raw data: three-dimensional time series 
of acceleration 

• Summary measures: raw data 
aggregated in fixed-time windows (e.g., 
1 minute intervals)

Figures rows 1 and 2: ActiGraph, LLC (adapted).  Sourced from: https://actigraphcorp.com/.  



Adaptive empirical pattern transformation (ADEPT) with application to 
walking stride segmentation

Karas, M., Straczkiewicz, M., Fadel, W., Harezlak, J., Crainiceanu, C. M., Urbanek, J. 
K. (2019). Biostatistics, 22(2), 331–347. https://doi.org/10.1093/biostatistics/kxz033

Estimation of free-living walking cadence from wrist-worn sensor 
accelerometry data and its association with SF-36 quality of life scores

Karas, M., Urbanek, J. K. U., Illiano, V. P., Bogaarts, G., Crainiceanu, C. M., Dorn, J. F. 
(2021). Physiological measurement, 42(6). https://doi.org/10.1088/1361-6579/ac067b



ADEPT: method for automatic, fast and accurate 
pattern segmentation in time-series
Scientific problem

• Detailed walking characteristics have become 
increasingly important in health studies

• Distance covered and speed in a 6 min 
walk, cadence, stride pattern variability, gait 
symmetry1

• Context: supervised and semi-supervised 
walking

• Need for automatic, fast and accurate methods 
for walking strides segmentation from raw 
accelerometry data

Challenges

• Variations in shape and duration of a pattern 
within and between individuals

• Different sensor locations: wrist (left, right), 
lower back, hip, ankle

1: Studenski et al., 2011; Brown et al., 2014; Urbanek et al., 2017; Del Din et al., 2019

r t = x!" t + x"" t + x#"(t)



ADEPT: method for automatic, fast and accurate 
pattern segmentation in time-series
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• Detailed walking characteristics have become 
increasingly important in health studies

• Distance covered and speed in a 6 min 
walk, cadence, stride pattern variability, gait 
symmetry1

• Context: supervised and semi-supervised 
walking

• Need for automatic, fast and accurate methods 
for walking strides segmentation from raw 
accelerometry data

Challenges

• Variations in shape and duration of a pattern 
within and between individuals

• Different sensor locations: wrist (left, right), 
lower back, hip, ankle

1: Studenski et al., 2011; Brown et al., 2014; Urbanek et al., 2017; Del Din et al., 2019

4 individuals from STURDY RCT (age mean = 77.3, SD = 5.5).
Data collected at a non-dominant wrist during a 6-minute walk 
with ActiGraph GT9X at 80 Hz.



ADEPT: method for automatic, fast and accurate 
pattern segmentation in time-series
Proposed method 1 : ADaptive Empirical Pattern 
Transformation (ADEPT) 

• Uses a predefined pattern template function φ(t)
to detect pattern repetitions in the observed 
data, x(t), by maximizing local similarity (e.g., 
covariance, correlation) between:

a) the collection of time-translated and 
rescaled templates, !

"
φ #$%

" ",%
;

b) observed data x(t).

• Done by iteratively identifying maxima of 
similarity (here: covariance) function: 

W' s, τ = ∫$(
( x(t) !

"
φ #$%

"
dt ,

where φ(t) is non-zero in [0,1], x(t) is non-zero 
in [0, T].  

1: Karas et al., 2019.    
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Optimized for identification of walking strides in 
raw accelerometry data:

• Uses 1D vector magnitude r(t) of 
accelerometry data as x(t) => Invariant to 
sensor rotation, and robust to sensor 
placement on wrist

• Template φ(t) is data-derived, and allows 
population- or individual-specific templates

• Maximizes W' s, τ iteratively => Accounts 
for changes of stride cadence across time 

• Allows multiple distinct templates 
φ!, φ), φ*, … simultaneously => Accounts for 
changes of stride pattern across time 

• Uses location fine-tuning step => Returns 
precise location of start/end of a stride

• Implementation uses rolling statistics and 
supports parallel computing => 
Computational speed



ADEPT: results
ADEPT was validated against manual strides 
segmentation in continuous outdoor walk

• N = 32, healthy adult 

• 4 sensor locations (left wrist, left hip, both 
ankles)

• Excellent agreement with manual 
segmentation for hip and ankles, very good 
for wrist

From ADEPT-segmented walking strides: 

• Estimated temporal cadence [steps/s] 
trajectory

• Estimated subject-specific stride patterns

Figure 1. Walking cadence [steps/s] estimates during continuous 
outdoor walk (N = 32), based on raw accelerometry data collected at 
left ankle1. 

1: Karas et al., 2019.    

Figure 2. Examples of subject- and sensor-location specific stride 
patterns for three selected study participants1. 



Proposed method2

• Use ADEPT for initial exhaustive 
segmentation of walking stride patterns

• Filter the results –- accept a pattern if:

• (a) has high correlation with a template,
• (b) in consecutive >=3, 
• (c) “looks alike” its neighbouring patterns 

• For (c), uses transformation of raw 
accelerometry data from Cartesian [x!, x), x*]
into spherical [az, el, r] coordinate system

ADEPT extension: walking segmentation from 
data collected in the free-living at a wrist

Scientific problem

• Walking features measured in the lab are weakly 
associated with those from the free-living1

• Free-living: decreased speed, increased step 
variability, increased asymmetry1

• Need for methods to segment walking strides in 
the free-living environment

Challenges

• Sensor typically worn at wrist -- a challenging 
location for walking identification

• Validation is difficult

1: Del Din et al., 2016; Mueller et al., 2019; Van Ancum et al., 2019
2: Karas et al., 2021
Figure -- left: ActiGraph (adapted), LLC. Figure – right: MathWorks (adapted).    



Resources

• adept R package:
• Implements ADEPT and its extension for 

free-living
• Data examples and tutorials 

ADEPT: summary of contributions
Methods

• Karas et al. (2019). Adaptive empirical pattern 
transformation (ADEPT) with application to 
walking stride segmentation. Biostatistics.  

• Karas et al. (2021). Estimation of free-living 
walking cadence from wrist-worn sensor 
accelerometry data and its association with SF-36 
quality of life scores. Physiological Measurement.

Applications

• Karas et al. (2021): higher free-living cadence 
associated with better quality of life score

• Urbanek et al. (revised, resubmitted): higher 
free-living cadence associated with lower fall 
rates in older individuals

• Catallini (2020): In MS thesis, ADEPT used for 
segmentation of neuronal activity traces from time 
series of calcium imaging

• Rubin lab (U of Chicago): Integrating ADEPT for 
iOS for semi-supervised experiments

• Qiao (U of Pittsburgh; PhD thesis): novel markers 
to identify performance fatigability during a fast-
paced 400 m walk

https://www.accelerometry.org/

https://www.accelerometry.org/


ADEPT: potential future directions
1. Functional registration of individual walking 

stride patterns (characterization of gait 
asymmetry etc.)

2. Functional registration of temporal walking 
characteristics from standardized tests (e.g.
cadence in 6 minute walk test)

At Center For 
Movement Studies,
Kennedy Krieger 
Institute, Baltimore 
with 
Drs Purnima
Padmanabhan and 
Ryan Roemmich



Harmonization of accelerometry-based measures of 
physical activity

Karas, M.*, Muschelli, J. *, Leroux, A., Urbanek, J.K., Wanigatunga, A.A., Bai, J., 
Crainiceanu, C.M., Schrack, J.A. (2021). Submitted. 

* : Shared co-first authorship. 



Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 

Scientific problem

• Summary measures of raw accelerometry data 
are commonly used in health research1 to 
characterize physical activity

• Widely-used: ActiGraph “activity counts” (AC) 

• ActiGraph hardware and licensed software 
needed to derive from raw data

• Recently, open-source statistics have been 
proposed to aggregate raw data: MIMS, 
ENMO, MAD, AI2

• Comparability to previously published research 
is unknown 

• AC cut-off points, AC population quantiles

1: Karas et al., 2019b.  
2: MIMS: John et al., 2019; ENMO: van Hees et al., 2013; MAD: Vähä-Ypyä et al., 2015; 
AI: Bai et al., 2012

Measure Based on 

MIMS AUC of interpolated, 
extrapolated, bandpass-filtered
x+ t ; then added across axes 
m = 1,2,3

ENMO Mean of r t vector magnitude 
from pre-calibrated raw data 
[x!(t), x)(t), x*(t)]

MAD Mean amplitude deviation of r t
vector magnitude

AI Variance of x+ t ; then averaged 
across axes m = 1,2,3

MIMS -- Monitor-Independent Movement Summary 
ENMO -- Euclidean Norm Minus One 
MAD -- Mean Amplitude Deviation
AI -- Activity Index  



Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures



Challenges

• Large volume of raw accelerometry data  
needs quality check

• 700 participants x 7 days x 1440 minutes 
x 60 seconds x 80 obs./s x 3 sensor axes 
= 101,606,400,000 (one hundred billion+) 

Methods

• Adapted raw data quality flags from recently 
published NHANES protocol1

• Implemented flags to detect acceleration 
spikes, values at the sensor’s dynamic range

Results

• Identified few flagged cases of raw 
measurements

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

1: NHANES 2011-2012 Data Documentation (2020)



Methods

• Linear regression with subject-specific 
correlation between measures as an outcome

Results
• Very high correlation between: AC and MIMS, 

AC and AI
• Significant but small effects of covariate(s)

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

Unadjust. 
model

Model adjusted for: age, BMI, sex

Intercept Intercept Age BMI
Sex (is 
male)

Response var.
Coef. est. 

(se)
Coef. est. 

(se)
Coef. est. 

(se)
Coef. est. 

(se)
Coef. est. 

(se)
corr
(AC, MIMS)

0.988
(0.0002)

0.988 
(0.0017)

< 0.001 
(<0.0001)

< 0.001 
(<0.0001)

-0.002 
(0.0005)*

corr
(AC, ENMO)

0.867
(0.0018)

0.887 
(0.0138)

-0.001 
(0.0001)*

0.001 
(0.0004)

> -0.001 
(0.0037)

corr
(AC, MAD)

0.913
(0.0013)

0.892 
(0.0099)

< 0.001 
(0.0001)

0.001 
(0.0003)*

-0.010 
(0.0026)*

corr
(AC, AI)

0.970
(0.0007)

0.962 
(0.0050)

< 0.001 
(< 0.0001)

< 0.001 
(0.0001)*

-0.010 
(0.0013)*

Table. "*" symbol is used to denote model coefficients (excluding 
intercept) for which the corresponding p-value was <0.05. 



Challenges

• Estimate the relation between pairs of minute-
level measures (x,-(t), y,-(t)) e.g., 
(AC,-(t),MIMS,-(t)) as a smooth function f
while accounting for correlation structure (i-th
participant, j-th day, t-th minute)

• Volume of minute-level data = 700 participants 
x 7 days x 1440 minutes = 7,056,000

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

Showing 1% of the data. 



Methods

• Estimated f via additive model               
y,- t = f(x,-(t)) + ε,-(t), assuming 
independence

• Used ”case bootstrap”1 (sampling units at the 
highest level and then sampling within these 
units without replacement) to get 95% CI for Ff

• Used Ff to define one-to-one harmonization 
mapping

• Evaluated Ff in tasks of: (a) predicting total AC, 
(b) classifying a minute into active vs non-
active 

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

1: Ren et al., 2010  



Results

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

AC cut-off proposed in AC !f!"!#(AC) (95% CI)

Koster (2016) 1853 10.56 [10.53, 10.59]

Montoye (2020) 2860 15.05 [15.02, 15.07]

Montoye (2020) 3940 19.61 [19.58, 19.65]

Black solid line: Ff AC , dashed lines: 95% CI



Challenges

• Required to impute minute-level data 
missingness (up to 10% per 24 h) 

Methods

• For each measure separately, use FPCA 
model Y, t = µ t + ∑./!

012 ξ,.ϕ. t + ε,(t) to 
estimate LY,(t) -- smoothed (fitted) version of 
each i–th participant-day functional 
observation1

• Use LY,(t) for imputation

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor 

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures

1: Leroux et al., 2020



Results

Harmonization of open-source and proprietary 
accelerometry-based physical activity measures 
Contributions

Data from ~700 participants in the Baltimore 
Longitudinal Study on Aging (BLSA), each 
monitored for a week with a wrist-worn PA 
sensor 

1. Summarized raw data at minute-level: AC
and open-source MIMS, ENMO, MAD, AI

2. Quantified association between AC and 
open-source measures marginally and 
conditionally on age, sex and BMI

3. Harmonized minute-level AC with open-
source measures via one-to-one mapping 

4. Reproduced some of the published BLSA 
results that used AC with the use of the 
open-source measures1

Figure. Smoothed 24-hour median activity counts per 
minute across four age group. Solid semi-transparent 
colour lines: AC. Dashed colour lines: results obtained 
with (AC values mapped into AC from MIMS using the 
harmonization mapping. 

1: Schrack et al., 2013



Summary measures of physical activity: potential 
future directions
1. Harmonization of data from large- and 

mega-size studies collecting minute-level 
measurements of physical activity

2. Data imputation for continuously collected 
measurements of physical activity

AC

AC

ENMO

MIMS

NHANES most recent 
release (cohorts 
2011-2012, 2013-2014)



Upstrap for estimating power and sample size in 
complex models

Karas, M., Crainiceanu, C.M. (2021). Submitted. 
https://doi.org/10.1101/2021.08.21.457220 



Upstrap method for power and sample size 
estimation in complex models
Scientific problem

Given an observed data sample 𝐱 of sample 
size N, a null and an alternative hypothesis and 
a test statistic, assuming significance level α, 

• estimate the sample size M required to 
achieve power (1 − β) (i.e., to achieve 
probability of rejecting the null hypothesis 
when the null is true) 

Here, we consider power to detect:

• (a) an effect size observed in the sample 𝐱;
• (b) an effect size chosen by a researcher.

and aim to address complex settings, including 
testing significance of model coefficients in: 
LM, GLM, LMM, GLMM.



# Example: one-sample t-test

set.seed(123)

# simulate observed sample
x <- rnorm(n = 30, mean = 0.2, sd = 1)

mean(x)
# [1] 0.1528962

# effect size observed in sample x
(“observed power” estimation)
power.t.test(n = 30, delta = mean(x),
sd = sd(x), type = "one.sample")$power

# [1] 0.1283329

Upstrap method for power and sample size 
estimation in complex models
Scientific problem

Given an observed data sample 𝐱 of sample 
size N, a null and an alternative hypothesis and 
a test statistic, assuming significance level α, 

• estimate the sample size M required to 
achieve power (1 − β) (i.e., to achieve 
probability of rejecting the null hypothesis 
when the null is true) 

Here, we consider power to detect:

• (a) an effect size observed in the sample 𝐱;
• (b) an effect size chosen by a researcher.

and aim to address complex settings, including 
testing significance of model coefficients in: 
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# Example: one-sample t-test

set.seed(123)

# simulate observed sample
x <- rnorm(n = 30, mean = 0.2, sd = 1)

mean(x)
# [1] 0.1528962

# effect size observed in sample x
(“observed power” estimation)
power.t.test(n = 30, delta = mean(x),
sd = sd(x), type = "one.sample")$power

# [1] 0.1283329

# effect size chosen by researcher 
(here: 0.1) 
power.t.test(n = 30, delta = 0.1, 
sd = sd(x), type = "one.sample")$power

# [1] 0.07781938

Upstrap method for power and sample size 
estimation in complex models
Scientific problem

Given an observed data sample 𝐱 of sample 
size N, a null and an alternative hypothesis and 
a test statistic, assuming significance level α, 

• estimate the sample size M required to 
achieve power (1 − β) (i.e., to achieve 
probability of rejecting the null hypothesis 
when the null is true) 

Here, we consider power to detect:

• (a) an effect size observed in the sample 𝐱;
• (b) an effect size chosen by a researcher.

and aim to address complex settings, including 
testing significance of model coefficients in: 
LM, GLM, LMM, GLMM.



# Example: bootstrap vs upstrap

# observed sample 
x <- 1:10

# bootstrap resample
xb <- sample(x, size = 10, replace = TRUE)

# upstrap resample 
# (sample size larger than in original x) 
xu1 <- sample(x, size = 20, replace = TRUE)

# upstrap resample 
# (sample size smaller than in original x) 
xu2 <- sample(x, size = 8, replace = TRUE)

Upstrap method for power and sample size 
estimation in complex models
Methods

• Upstrap -- resampling with replacement 
fewer or more observations than in original 
sample 𝐱 -- was proposed1 as a general 
solution 

• For effect size observed in the 
sample x

• Not evaluated in numerical 
experiments

• Contributions of this project: 

• Extend upstrap approach for 
estimating power to detect an effect 
size chosen by a researcher

• Evaluate method in a simulation 
study

1: Crainiceanu and Crainiceanu (2020) 



Upstrap-based algorithm for estimating power
Methods

Given observed data sample 𝐱 of size N, to 
estimate power for a target sample size M:

• Case (a): effect size observed in the sample 𝐱

1. Generate B upstrap resamples of size M; 

2. Perform hypothesis test on each resample; 

3. Estimate power as the proportion of B
resamples where the null hypothesis was 
rejected. 

• Case (b): effect size chosen by researcher

• As above (a), but update response 
variable values in sample 𝐱 (/resample) so 
as the updated sample (/resample) reflects 
the target effect size1

1: Details in the preprint



Upstrap-based algorithm for estimating power

Toy example: one-sample t-test

# simulate observed sample
x <- rnorm(n = 30, mean = 0.2, sd = 1)

# Case (a): effect size observed

out <- rep(NA, B)
for (bb in 1 : B){

x_bb <- sample(x, size = M, replace = T)    
out[bb] <- (t.test(x_bb)$p.value < 0.05)

}
mean(out)

Methods

Given observed data sample 𝐱 of size N, to 
estimate power for a target sample size M:

• Case (a): effect size observed in the sample 𝐱

1. Generate B upstrap resamples of size M; 
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3. Estimate power as the proportion of B
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rejected. 

• Case (b): effect size chosen by researcher

• As above (a), but update response 
variable values in sample 𝐱 (/resample) so 
as the updated sample (/resample) reflects 
the target effect size1

1: Details in the preprint



Toy example: one-sample t-test
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# Case (a): effect size observed

out <- rep(NA, B)
for (bb in 1 : B){

x_bb <- sample(x, size = M, replace = T)    
out[bb] <- (t.test(x_bb)$p.value < 0.05)

}
mean(out)

# Case (b): effect size chosen to 0.4

x <- x + (0.4 - mean(x))
out <- rep(NA, B)
for (bb in 1 : B){

x_bb <- sample(x, size = M, replace = T)
out[bb] <- (t.test(x_bb)$p.value < 0.05)

}
mean(out)

Upstrap-based algorithm for estimating power
Methods

Given observed data sample 𝐱 of size N, to 
estimate power for a target sample size M:

• Case (a): effect size observed in the sample 𝐱

1. Generate B upstrap resamples of size M; 

2. Perform hypothesis test on each resample; 

3. Estimate power as the proportion of B
resamples where the null hypothesis was 
rejected. 

• Case (b): effect size chosen by researcher

• As above (a), but update response 
variable values in sample 𝐱 (/resample) so 
as the updated sample (/resample) reflects 
the target effect size1

1: Details in the preprint
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Toy example: one-sample t-test

Consider:  x, ~,,3𝒩 0.3, 1 , i = 1,… , 50,
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Upstrap-based algorithm for estimating power:
simulation study

Data-generating model
(effect being tested highlighted in color)

Observed 
sample 
size

Target effect size Comparator 
to upstrap

1 Y, = β4 + ε, 50 0.3, 0.4, 
observed

power.t.test()

2 Y, = β4 + β!X!, + ε, 50 0.3, 0.4, 
observed

power.t.test()

3 Y, = β4 + β!X!, + β)X), + β*X*, + ε, 50 0.5, 1, observed SIMR

4 logit(π,) = β4 + β!X!, + β)X), + β*X*, 50 0.5, 1, observed SIMR

5 Y,- = b4, + β4 + β!X!,- + β)X),- + β*X*,- + ε,- 50 0.5, 1, observed SIMR

6 logit π,- = b4, + β4 + β!X!,- + β)X),- + β*X*,- 50 0.5, 1, observed SIMR

• Summary of the simulation setup across six different problems: 

• In each of the six problems: 
• X!, / X!,- is defined as dichotomous variable

• 1,000 independent experiment repetitions (generating a sample and power estimation)
• Two-sided test used to test H4: β = 0 versus H!: β ≠ 0 at significance level α = 0.05
• “True power” estimated by proportion of null rejected from 10,000 samples
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Upstrap-based algorithm for estimating power:
summary
• Simulation results: 

• For one- and two-sample t-test, the upstrap performed 
essentially identical to the well-established analytical 
solutions for power estimation 

• In complex scenarios, the upstrap performed similarly 
the existing method from SIMR R package; both 
approaches demonstrated very high agreement with the 
true power estimates

• The upstrap method is “read-and-use”

• It can be implemented by any analyst who is familiar 
with software allowing to: (a) resample data, (b) run the 
statistical test of interest



Upstrap method for power and sample size 
estimation: potential future directions
1. Upstrap for estimating power to detect an effect while 

(a) preserving or (b) changing covariate class 
proportions

2. Resampling (up/down) cluster-specific observations in 
longitudinal data 



Summary of contributions 

The main methodological contributions of this 
thesis are: 

1. development and validation of ADEPT, a 
novel statistical pattern-segmentation 
method;

2. introduction of harmonization methods of 
objective summary measures of physical 
activity; 

3. study of the upstrap properties in complex 
scenarios; 

4. development of four R software packages.

R software packages: 

• runstats: Fast Computation of Running 
Statistics for Time Series (CRAN)

• adept: Adaptive Empirical Pattern 
Transformation (CRAN)

• adeptdata: Accelerometry Data Sets (CRAN)

• arctools: Processing and Physical Activity 
Summaries of Minute Level Activity Data 
(CRAN) 

All projects code publicly available: 

• ADEPT (GitHub repo 1, GitHub repo 2)

• Harmonization of measures (GitHub repo)

• Upstrap (GitHub repo)

Reviewer for: 

• Plos One, Digital Biomarkers, Scandinavian 
Journal of Medicine & Science in Sports
(Publons)

https://cran.r-project.org/web/packages/runstats/index.html
https://cran.r-project.org/web/packages/adept/index.html
https://cran.r-project.org/web/packages/adeptdata/index.html
https://cran.r-project.org/web/packages/arctools/index.html
https://github.com/martakarass/adept-manuscript
https://github.com/martakarass/walking-segmentation-free-living-wrist
https://github.com/muschellij2/blsa_mims
https://github.com/martakarass/upstrap_manuscript
https://publons.com/researcher/4359951/marta-karas/
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