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Abstract.

Objective: We evaluate the stride segmentation performance of the Adaptive Empirical

Pattern Transformation (ADEPT) for subsecond-level accelerometry data collected in

the free-living environment using a wrist-worn sensor.

Approach: We substantially expand the scope of the existing ADEPT pattern-matching

algorithm. Methods are applied to subsecond-level accelerometry data collected

continuously for 4 weeks in 45 participants, including 30 arthritis and 15 control

patients. We estimate the daily walking cadence for each participant and quantify

its association with SF-36 quality of life (QoL) measures.

Main results: We provide free, open-source software to segment individual walking

strides in subsecond-level accelerometry data. Walking cadence is significantly

associated with the Role physical score reported via SF-36 after adjusting for age,

gender, weight and height.

Significance: Methods provide automatic, precise walking stride segmentation, which

allows estimation of walking cadence from free-living wrist-worn accelerometry data.

Results provide new evidence of associations between free-living walking parameters

and health outcomes.

1. Introduction

1.1. Motivation

Gait characteristics have become increasingly important in epidemiological and clinical

studies. Traditional lab-measured walking features that quantify functional exercise

capacity (e.g., distance covered and gait speed in the 6-minute walk test) (ATS 2002,

Studenski et al. 2011) have been shown to be associated with survival. Walking cadence

(steps per minute), stride pattern variability, and gait symmetry have recently been
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proposed (Brown et al. 2014, Urbanek et al. 2017, Del Din et al. 2019) as complementary

measures of the associations between walking characteristics and health outcomes.

Indeed, 3 out of 7 submissions to the FDA for electronic Clinical Outcome Assessment

qualifications of digital endpoints are quantifying gait parameters (COA Qualification

Program Submissions n.d.).

However, recent publications suggest that walking features measured in a laboratory

setting may only be weakly associated with the same features derived from data collected

in the free-living environment (Van Ancum et al. 2019, Mueller et al. 2019, Del Din et al.

2016). This may be due to the difference between the individual ability to perform

specific activities (what people can do) versus activities performed (what people do do).

1.2. Wearable accelerometers in health studies

A growing number of studies have been collecting wearable accelerometers data.

Accelerometers are small electromechanical devices that collect acceleration along three

orthogonal axes at high frequency (typically 10-100 Hz). These data can provide

detailed characteristics of walking in the lab and in the free-living environment. Recent

advances in technology (smaller devices, decreasing cost, and increasing ergonomics)

make it possible to monitor individuals continuously for weeks without recharging the

battery (Karas, Bai, Straczkiewicz, Harezlak, Glynn, Harris, Zipunnikov, Crainiceanu

& Urbanek 2019).

Accelerometry monitoring of unsupervised physical activity in the home has been

an active area of research, fueled by the developments of home wireless network

technologies (Mathie, Coster, Lovell & Celler 2004). Application examples include long-

term monitoring of functional status (Mathie, Coster, Lovell, Celler, Lord & Tiedemann

2004, Jehn et al. 2013), detection of events such falls (Lan et al. 2012, Bianchi et al.

2010), and identification of cognitive impairment (Marmeleira et al. 2017, Chen et al.

2019).

In early free-living studies, participants typically wore devices close to their body

center of mass (lower back, hip, waist) (Straczkiewicz et al. 2019). However, recent

large observational studies (e.g., UK Biobank, U.S. National Health and Nutrition

Examination Survey (NHANES)) largely shifted to wrist-worn devices to improve the

comfort of participants and adherence (Troiano et al. 2014). Controlled scientific data

collection is thus aligning with the consumer market, where affordability of wrist-worn

consumer-grade devices has generated a wealth of data that is increasingly being used

for health research (Lai et al. 2017). While wrist-worn accelerometry data has become

increasingly available, there is a substantial gap in methods dedicated to quantifying

gait characteristics in the free-living environment.

1.3. Methodology gaps

A detailed characterization of walking often requires precise identification of the start

and duration of a step or stride (two subsequent steps). Proposed methods for strides
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segmentation in accelerometry data are typically based on landmark events (e.g., heel-

strike, push-off or swing) (Selles et al. 2005, McCamley et al. 2012, Godfrey et al. 2015,

Wang et al. 2012, Willemsen et al. 1990). They are designed for a specific body location

(e.g., foot) and cannot be easily adapted to data collected at the wrist. Template

matching-based methods were proposed for segmenting steps during a standardized

test using data collected at the waist (Soaz & Diepold 2016) and shoe (Barth et al.

2015, Ying et al. 2007), respectively. The ADEPT template-matching method (Karas,

Straczkiewicz, Fadel, Harezlak, Crainiceanu & Urbanek 2019) for stride segmentation

was validated with accelerometry data collected at wrist during an outdoor walk.

While most consumer-grade accelerometers collect step counts, their algorithms remain

proprietary.

To the best of our knowledge, there are currently no open-source methods and

software that can perform walking strides segmentation in actigraphy data collected at

wrist in the free-living environment.

1.4. Challenges

Despite its importance, quantifying walking is difficult. Indeed, even proprietary

algorithms of consumer-grade wearable devices can be inaccurate when estimating the

step counts (Maganja et al. 2020). This is likely due to the larger heterogeneity and

lower signal amplitude associated with wrist movement during walking. To better

highlight some data traits, Figure 1 displays the raw three-dimensional accelerometry

data collected with a wrist-worn sensor at a frequency of 30 Hz. The upper panel

shows 60 minutes of data collected from an individual between 10:30 am and 11:30 am,

the middle panel shows 10 minutes-long subset of the top panel data, and the bottom

panel shows 40 seconds-long subset of the middle panel data. Grey shaded area and

black vertical dashed lines indicate the subset of data displayed on the following panel.

Data in the lower panel between 10:36:52 and 10:37:15 likely correspond to walking

activity. While the pattern can be observed and recognized, designing a method that

mimics a human observer is quite difficult. Moreover, there is substantial variation in

shape, duration, and amplitude of the accelerometry signal of a walking stride. Another

problem is the lack of publicly available datasets collected during free-living that contain

detailed activity labels. The lack of a gold standard thus makes it difficult to validate

and compare stride segmentation methods.

1.5. This paper’s contribution

We propose to narrow the substantial methodological gap outlined above. We

substantially expand the scope of the existing ADEPT algorithm to incorporate wrist-

accelerometer data collected in the free-living environment. Methods are applied to

data collected continuously for 4 weeks for each study participant in a sample of 45

participants, including 30 arthritis patients. Daily walking cadence is estimated for each

study participant and the association with measures of quality of life (QoL) is quantified.



Estimation of free-living walking cadence from wrist-worn sensor accelerometry data 4

Figure 1. Raw three-dimensional accelerometry data collected with a wrist-worn

sensor at frequency 30 Hz. Top panel: 60 minutes of data; middle panel: 10 minutes-

long subset of the top panel data; bottom panel: 40 seconds-long subset of the middle

panel data. Grey shaded area and black vertical dashed lines indicate the subset of

data displayed on the following panel.

We provide open-source software and publish data examples that could be used for a

performance comparison of strides segmentation and cadence estimation methods in

future studies.

2. Methods

2.1. Study participants and data collection

Data were collected as a part of an observational study on a population with arthritis

and healthy individuals, funded by Novartis Pharma AG (Basel, Switzerland). This

dataset is described in Perraudin et al. (2018).

2.1.1. Recruitment procedure. A total of 30 arthritis patients (AP) were recruited,

among whom 18 patients had rheumatoid arthritis, 2 patients had psoriatic arthritis, and

10 patients had osteoarthritis. In addition, a group of 15 healthy volunteers (HV) was

recruited with age and gender distribution matched with that of the arthritis patients.

The AP cohort was recruited through Tallaght Hospital via Trinity College Dublin. The

HV cohort was recruited through University College Dublin. Informed written consent

was obtained prior to inclusion following ethical approval by the institutional ethics

committee.
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2.1.2. Actigraphy data collection and preprocessing. Participants were equipped with

the ActiGraph GT9X Link device (ActiGraph, Pensacola, FL) and instructed to wear it

for 4 weeks on the wrist of their choice, without removing it for sleep. The devices were

configured to collect raw tri-axial accelerometer measurements at a sampling frequency

of 30 Hz. Participants were instructed to charge the device weekly during the study

period. The ActiLife software was used to retrieve raw tri-axial and 1-minute epoch data.

A modified version of the Choi (Choi et al. 2011) non-wear time detection algorithm

was used to estimate non-wear epochs.

2.1.3. Onsite visit. A study staff member visited each participant at home at the

beginning of the study to provide written and verbal instructions. Under the supervision

of the study staff member, each participant performed a series of short activity tasks,

including a short straight walk wearing the ActiGraph device.

2.1.4. SF-36 survey data collection. The 36-Item Short Form Health Survey (SF-36)

(Ware & Sherbourne 1992) was administrated to each participant by a study staff

member on the first and last day of the study. The SF-36 evaluates eight health-related

domains, including physical function (limitations in physical activities because of health

problems), physical role (limitations in usual role activities because of physical health

problems), body pain, general health (general health perceptions), vitality (energy and

fatigue), social function (limitations in social activities because of physical or emotional

problems), emotional role (limitations in usual role activities because of emotional

problems), and general mental health (psychological distress and well-being). The SF-

36 survey also provides two summary scores: physical component summary and mental

component summary. The total score for each SF-36 component ranges between 0 and

100, with a higher score corresponding to a better quality of life (QoL).

2.2. Segmentation of individual walking strides in raw accelerometry data

2.2.1. Three-axial accelerometry signal preprocessing. The first step of data processing

was to transform the three-dimensional time-series sensor output from Cartesian to

spherical coordinates. Denote by (xt, yt, zt) and (azt, elt, rt) the data in the Cartesian

and spherical coordinate system, respectively. Here azt represents the azimuth angle –

rotation of the accelerometer in the plane of an activity monitor face, elt represents the

elevation angle – tilt relative to the plane of an activity monitor face, and rt represents

the radius – acceleration vector magnitude. More precisely, for a three dimensional

vector (x, y, z) az = atan2(y, x), el = atan2(z,
√
x2 + y2), r =

√
x2 + y2 + z2, where

atan2(y, x) is the inverse tangent of y and x. The choice of spherical coordinates was

motivated by (a) the fact that rt is the base of the algorithm the current paper expands

on (see Sect. 2.2.2), (b) our hypothesis that azt and elt of acceleration collected by a

wrist-worn sensor are better suited to characterize movements expected during some

of the walking, such as arm swing and tilt, and that they allow for a more intuitive



Estimation of free-living walking cadence from wrist-worn sensor accelerometry data 6

interpretation of the raw acceleration data. Figure 2 displays the same accelerometry

data from the lower panel of Figure 1 in spherical coordinates.

Figure 2. Raw three-dimensional accelerometry data after transformation from

Cartesian (xt, yt, zt) to spherical (azt, elt, rt) coordinate system. The displayed

(azt, elt, rt) data correspond directly to (xt, yt, zt) data showed on the lower panel

in Figure 1.

2.2.2. Walking stride pattern segmentation with the ADEPT method. The second

step of data processing was to use the Adaptive Empirical Pattern Transformation

(ADEPT) method (Karas, Straczkiewicz, Fadel, Harezlak, Crainiceanu & Urbanek

2019) to segment walking stride patterns in vector magnitude of raw accelerometry

data, rt. ADEPT is a dictionary-based, statistical pattern recognition algorithm

optimized for precise (at sub-second resolution) identification of time and duration

of walking strides. The method was validated with data collected from wrist-worn

sensors during continuous walking. The referenced study did not have a true gold

standard of strides segmentation and instead validated the ADEPT against manual

strides segmentation; visual inspection of the results and comparison of the results across

multiple simultaneous sensor locations were also performed. ADEPT implementation

is freely available for download as adept R package (Karas, Urbanek, Crainiceanu,

Muschelli & Gherman n.d.), accompanied by user tutorials (Karas, Urbanek &

Crainiceanu (n.d.a), Karas, Urbanek & Crainiceanu (n.d.b)). The ADEPT algorithm

uses a predefined template and detects its repetitions by maximizing the local correlation

between a collection of scale-transformed templates and the observed data signal at

every time point. For the correlation maximizing step, the observed data undergoes

moving average smoothing with the length of a smoothing window corresponding to
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to 0.2 seconds of data collection. The scale-transformation adjusts the duration of the

dictionary template, allowing for the detection of patterns that are shorter or longer

than the original dictionary template. Multiple distinct baseline templates can be used

simultaneously to account for various shapes of stride patterns in the data.

In the ADEPT segmentation, three wrist-specific stride templates publicly available

in adeptdata R package (Karas, Urbanek, Fadel & Harezlak n.d.) were used. The

templates were derived by Karas, Straczkiewicz, Fadel, Harezlak, Crainiceanu &

Urbanek (2019) using data collected from 32 healthy participants between 23 and 52

years of age. The ADEPT result describes each segmented stride by its: (a) start time,

(b) duration time (seconds), and (c) correlation with the best-fit stride template.

2.2.3. Identification of free-living walking strides from ADEPT-segmented data. The

third step of the data processing procedure was to filter ADEPT-derived strides to keep

those that: (1) have a correlation with the best-fit template stride of at least 0.85;

(2) have duration time between 0.8 and 1.4 seconds; and (3) have (rt)t amplitude and

mean amplitude deviation within [0.2, 2.0]g and [0.05, 2.0]g, respectively. To further

increase the specificity of the procedure, strides were identified only if they occurred in

a sequence of at least three that have similar duration, median azimuth angle (azt)t and

median elevation angle (elt)t. The algorithm is described in detail in Appendix A.1. The

algorithm’s default parameter values were established based on the exploratory analysis

of supervised-walking data and underwent sensitivity analysis (see Section Appendix

A.3). The implementation of the algorithm with its default parameters is provided in

segmentWalking() function in adept R package; an example of stride segmentation

from independent data not used in the present study is publicly available on GitHub at

https://git.io/J35LV.

Quality control of free-living walking segmentation is described in Appendix A.2.

An extensive sensitivity analysis of was conducted to study the effect of the choice

parameter values on the robustness of results; methods are described in Appendix A.3.

2.2.4. Estimation of walking strides during supervised walking. The data window of a

participant’s short supervised walking (see Section 2.1.3) was determined based on its

start and end time annotated by a visiting staff member. The supervised walking strides

were identified in these data with the same algorithm as for free-living walking strides,

except the last conditions of imposing consecutiveness and similarity of three ADEPT-

segmented patterns were omitted. The relaxation of these conditions was meant to

increase sensitivity of the identification in a very short walking distance (as constrained

by participant’s dwelling).

2.3. Estimating the association between cadence and SF-36 survey outcomes

2.3.1. Daily cadence. Segmented strides were used to estimate the walking cadence

(expressed as a number of steps per minute) at every time of the day when walking was

https://git.io/J35LV
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identified. Next, the mode of all estimated cadences during the day was computed; we

refer to this measurement as participant’s daily cadence. The mode was used instead of

the average because it more closely represents the typical walking cadence and is more

robust to artefacts and outliers.

2.3.2. Model for association between cadence and QoL measurements. The association

between free-living daily cadence and SF-36 survey scores was estimated using a linear

mixed model (LMM) for each SF-36 score. In each LMM model the participant- and day-

specific cadence was the outcome, while the SF-36 score average (of the first and last day

measurements) and weekend-day indicator were fixed-effect covariates. The model also

contained a random intercept and a random slope for the weekend-day indicator. Three

scenarios were considered to account for different levels of confounding adjustment:

(i) model (1): no additional adjustment in the LMM formula,

(ii) model (2): adjustment for age, gender, weight, height,

(iii) model (3): adjustment for age, gender, weight, height, and supervised walking

cadence.

The main conceptual idea behind model (1) was that the presence of both AP

and HV cohorts would yield substantial variability in both QoL scores and free-living

walking cadence and hence their association can be captured despite the small size of

our sample. Model (2) attempts to account for covariates which we hypothesized could

further explain variability in walking cadence values; while some works reported no pair-

wise correlation between cadence and age, height and body weight (Samson et al. 2001),

the works that model cadence or walking speed (a function of cadence and stride length)

with multiple regression tend to account for these and sex covariates (O’Brien et al. 2018,

Jerome et al. 2015). Finally, model (3) additionally included supervised walking cadence

to observe if it can substantially change the estimated association between cadence and

QoL scores.

In this work, further quantification of associations regarding AP versus HV cohorts

was not pursued; the differences between individuals from the three suptypes of arthritis

condition were not studied either. Indeed, the data set available lacked a detailed

information about how arthritis condition was pronounced and affecting each of the

AP participants, and the sample size was considered too small to allow meaningful

condition-related conclusions given a mixture of the arthritis suptypes present.

The model formulas are specified in Appendix A.4. For each participant, only

data from valid days (defined as ≥ 80% sensor wear time) were used. Models were

fit using the lme4::lmer function (Bates et al. 2015) in R statistical software. The

95% confidence interval for the SF-36 score coefficient estimate was obtained using the

bootstrap percentile method implemented in the lme4::confint function in R.

2.3.3. Sample size calculation with upstrap method. To supplement the statistical

modeling results, the upstrap method (Crainiceanu & Crainiceanu 2018) was used
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to estimate the sample size required to identify a statistically significant association

between the SF-36 score and outcome at the α = 0.05 level with a power of 1−β = 0.8.

The upstrap was implemented separately for each LMM. The procedure started

by setting a grid of sample sizes ntmp ranging from 30 to 300. For each sample size

ntmp considered, B = 1000 samples were generated by sampling with replacement ntmp

study participants. The LMM was fit for every upstrapped data set and a p-value

for the association between the SF-36 score and the outcome was obtained using the

lmerTest::summary.lmerModLmerTest function (Kuznetsova et al. 2017) in R. For each

ntmp value, the proportion of B = 1000 resamples where the association was statistically

significant was calculated. The sample size was then estimated as the smallest ntmp

where this proportion was at least 0.8. Results are shown for three different strategies

for multiplicity adjustment to account for the k = 10 SF-36 scores: (a) no p-value

correction, (b) Benjamini and Hochberg (Benjamini & Hochberg 1995) correction, (c)

Bonferroni correction (Dunn 1961).

3. Results

3.1. Characteristics of study participants

Table 1 summarizes the demographics and SF-36 survey component scores for all

study participants and separately for sub-groups of arthritis patients (AP) and healthy

volunteers (HV). The study sample had a higher proportion of females (69%) and had

an average age of 51.9 (sd=12.5). The average SF-36 survey Summary scores were 44.0

and 51.8 for the Physical Component and Mental Component, respectively. The average

for the other SF-36 survey components ranged between 53.0 (Vitality) to 82.0 (Role

emotional). One specifics not captured by the Table 1 is that overall, men tended to be

older than women (average age was 55.2 (sd=12.5) and 50.4 (sd=12.3), respectively),

and had higher BMI than women (average BMI was 27.6 (sd=4.37) and 25.9 (sd=5.21),

respectively).

The proportion of females and the age averages were similar in the AP and HV sub-

groups. The AP sub-group had a higher average BMI (28.1) compared to AP sub-group

(22.9). All SF-36 survey components had a lower average in AP sub-group compared

to the HV sub-group; the largest differences between sub-groups (more than 40.0) were

observed for the items Physical function and Role physical.

3.2. Estimated walking strides

Figure 3 displays the cadence estimates expressed in steps per minute (y-axis) for each

study participant (x-axis). Each coloured dot corresponds to the mode of the cadence

on a given day, i.e. daily cadence (see Sect. 2.3.1); red dots correspond to the AP sub-

group participants and blue dots correspond to the HV sub-group participants. Each

black dot corresponds a person-specific mode of daily cadence across all days, i.e. typical

daily cadence. Typical daily cadence varied between 99.6 and 130.8 steps per minute
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Table 1. Summary of demographic information (rows 1-6) and SF-36 survey

component scores (rows 7-16) for all study participants (n = 45), and for sub-groups

of arthritis patients (n = 30) and healthy volunteers (n = 15). The values shown are

mean (sd), except for gender where count (percentage) is showed.

All Sub-group: Sub-group:

participants arthritis healthy

patients volunteers

n = 45 n = 30 n = 15

1 Gender: female 31 (68.9%) 21 (70.0%) 10 (66.7%)

2 Gender: male 14 (31.1%) 9 (30.0%) 5 (33.3%)

3 Age 51.9 (12.5) 53.9 (11.3) 47.9 (14.1)

4 Height [cm] 166.9 (7.7) 165.1 (7.6) 170.5 (6.7)

5 Weight [kg] 73.4 (13.8) 76.6 (13.4) 67.1 (12.7)

6 BMI 26.4 (5.0) 28.1 (4.9) 22.9 (3.0)

7 Physical function 64.8 (30.2) 49.2 (24.8) 96.0 (5.2)

8 Role physical 67.4 (29.4) 53.9 (26.1) 94.6 (10.5)

9 Bodily pain 61.5 (26.7) 48.3 (21.5) 87.8 (13.1)

10 General health 60.9 (24.8) 49.6 (21.6) 83.5 (11.8)

11 Vitality 53.0 (21.6) 44.7 (21.0) 69.6 (10.4)

12 Social functioning 78.1 (22.4) 69.8 (22.4) 94.6 (9.7)

13 Role emotional 82.0 (19.0) 76.2 (19.6) 93.6 (11.0)

14 General mental health 77.1 (13.3) 74.2 (14.7) 82.8 (7.4)

15 Physical Component Summary 44.0 (12.3) 37.5 (9.7) 57.1 (2.6)

16 Mental Component Summary 51.8 (7.1) 50.8 (7.9) 53.9 (4.7)

(mean (sd) 113.4 (7.5)), and was on average slightly higher in the HV sub-group (mean

(sd) 114.8 (7.3)) than in the AP sub-group (mean (sd) 112.7 (7.6)). Participant IDs are

ordered from the smallest (ID 22) to the largest (ID 40) typical daily cadence and the

observed trend is a consequence of this ordering. The size of the dots corresponds to the

number of strides summarized by it. Black “x” signs are the cadence estimated from

supervised walking. Table B1 in Appendix B.1 summarizes the data from Figure 3.

Both the number of strides and free-living daily cadence varied considerably

between and within participants. For example, participants with ID 1, 30, 33, and

38 had a standard deviation of daily cadence of 3, whereas participant with ID 27 had

a standard deviation of daily cadence of 11.4. The correlation between the supervised

cadence and free-living typical daily cadence was 0.21. Moreover, the estimated cadence

in the supervised context tends to be lower than in the free-living environment (note

the “x” signs that are predominantly below the black dots). This low correlation and

bias may be, at least in part, due to: (1) very short supervised walking bout duration;

(2) differences between the ability (can-do) and the need and will to engage in walking

(do-do); and (3) the environment where walking is performed.

Figure 4 displays 200 estimated strides for each of three study participants with

different typical daily cadence: 105.6 (participant ID: 38), 112.8 (ID: 11), and 120 (ID:
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Figure 3. Red (AP sub-group participants) and blue (HV sub-group participants)

points: daily cadence estimates (y-axis) for each valid day by study participant ID (x-

axis). The size of a point represents the number of strides identified for a participant

on a particular day. Black solid points: person-specific mode of daily cadence across all

days. Black “x” signs are the cadence estimated from supervised walking. Individuals

are ordered according to typical daily cadence.

5) steps per minute, respectively. For each of the three study participants data were

chosen from a randomly selected valid day. Plots in the first row display the vector

magnitude (y-axis) as a function of clock time (x-axis). Plots in the second row display

the same vector magnitudes as a function of the time standardized to the [0, 1] interval.

The red line is the point-wise mean of the standardized vector magnitude signals.

Each plot in Figure 4 exhibits a characteristic “W”-shaped pattern of a walking

stride, similar to shapes reported previously from a wrist-worn sensor data (Karas,

Straczkiewicz, Fadel, Harezlak, Crainiceanu & Urbanek 2019). However, vector

magnitude signals vary both between and within participants. For example, strides for

study participant 5 (top right panel) tend to be more consistent in terms of duration,

timing (similar peak and through locations), and amplitude (similar peak and through

sizes). In contrast, data for the participants 38 and 11 exhibits substantially more

variability in all these directions.

3.3. Quality control of segmentation results

Manual quality control of segmentation results is described in Appendix B.2. In short,

we concluded ADEPT with default parameters is highly specific.
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Figure 4. Visualization of 200 estimated strides for each of three study participants

with different typical daily cadence: 105.6 (participant ID: 38), 112.8 (ID: 11), and

120 (ID: 5) steps per minute, respectively. Plots in the first row display the vector

magnitude (y-axis) as a function of clock time (x-axis). Plots in the second row display

the same vector magnitude as a function of the time standardized to the [0, 1] interval.

The red line is the point-wise mean of the standardized vector magnitude signals.

3.4. ADEPT sensitivity analysis to choice of parameters

Figures B2 and B3 in Appendix B.3 provide results of an extensive sensitivity analysis

of the effect of algorithm parameters’ values on strides segmentation. Overall, stride

numbers and cadence estimates were stable around the values selected for the present

analyses (default values of the algorithm implementation).

3.5. Association between free-living walking cadence and SF-36 survey outcomes

Figure 5 provides the point estimates and 95% confidence intervals for the fixed effect

of SF-36 score on free-living cadence in the three models: model (1) without covariate

adjustment, model (2) with adjustment for age, gender, weight, height, model (3) with

adjustment for age, gender, weight, height, and supervised walking cadence. A separate

LMM was fit for each SF-36 score (see Section 2.3.2). The values of estimators β̂ and

corresponding 95% confidence intervals for all fixed effects considered, across all the

models in which a particular fixed effect was included, are reported in Tables B2-B8 in

Appendix B.

For model (1), the SF-36 score coefficient estimates were positive for all but one fit
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(Vitality); their estimated effect ranged from −0.062 to 0.759 steps per minute change

in free-living cadence per 10 points increase in the SF-36 score, and was not statistically

significant for any score. The fixed effect of a weekend day was statistically significant

in each SF-36 score’s fit, estimated −1.6 steps per minute of daily free-living cadence

on a weekend day compared to a week day (the reference level).

For model (2), the SF-36 score coefficient effect was statistically significant (α =

0.05) for Role physical score, suggesting that 10 points increase of Role physical score was

associated with 0.53 (95% CI: [0.002, 1.075]) steps per minute increase of daily cadence

while adjusting for age, gender, weight, height, and weekend versus weekday indicator.

Equivalently, 40.7 points increase of Role physical score (difference in averages between

HV and AP sub-groups) was associated with 2.24 steps per minute increase of daily

cadence while adjusting for age, gender, weight, height, and weekend versus weekday

indicator. Overall, for all model (2) LMM fits, the SF-36 score point estimates were

positive. For most of the scores, the 95% confidence intervals corresponded to results

being close to statistical significance (see Figure 5).

For model (2), the fixed effect of a weekend day compared to a week day had its

estimates essentially unchanged compared with model (1), and remained statistically

significant across all SF-36 score fits. Overall, the fixed effects of age were estimated

negative for all but one SF-36 score fit (Physical Component Summary), with increase

in age by 1 year associated with between −0.052 to 0.001 of change in steps per

minute of daily free-living cadence (while keeping other covariates fixed); they were

all not statistically significant, and – differently to SF-36 score effect coefficients – their

confidence intervals were all centered roughly at 0.0. The fixed effects of weight (kg)

were estimated all negative, with increase in weight by 1 kg associated with between

−0.05 to −0.003 of change in steps per minute (while keeping other covariates fixed);

they were all not statistically significant. The fixed effects of height (cm) were estimated

all negative, with increase in height by 10 cm associated with between −2.06 to −1.34 of

change in steps per minute (while keeping other covariates fixed) across the SF-36 score

fits; while they were all not statistically significant, the confidence intervals were largely

shifted to negative values (see Table B7 in Appendix B.). Finally, a relatively large

magnitude of male versus female gender effect has been observed, with male indicator

coefficient ranging from −5.05 to −4.25 across SF-36 score fits; while they were all

not statistically significant, the confidence intervals were very largely shifted to negative

values, yielding the effect being close to statistical significance (see Table B5 in Appendix

B.) We hypothesize that the differences in age distibution between males and females

in this sample (see Sect. 3.1) might have contributed to relatively large magnitude of

estimated gender effect.

For model (3) with covariate adjustment increased by including supervised cadence

estimate, the interpretation of results does not change substantially compared to model

(2). The supervised cadence effect was not statistically significant in any of the SF-36

score fits, and the coefficient confidence intervals were all centered roughly at 0.0. This

aligns with our earlier observations of low correlation between free-living and supervised
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cadence estimates in this study.

Figure 5. Linear mixed model estimates (x-axis) and corresponding 95% confidence

intervals for the association between SF-36 scores and free-living cadence (steps per

minute). The point color corresponds to the value of a model coefficient point estimate

(green: positive, white: close to zero, red: negative). The confidence interval color is

blue if the confidence interval does not cover 0, and is black otherwise.

3.5.1. Upstrap results. Figure 6 provides the upstrap-estimated sample sizes required

for a 80% power to detect the association between SF-36 scores and cadence (see

Section 2.3.3). The estimated sample size is below 300 participants for all but three

(Mental Component Summary, Vitality, General health) SF-36 scores. This holds even

for the most conservative p-value adjustment scenario (Bonferroni correction for k = 10

multiple comparisons reflecting k = 10 SF-36 scores being tested). These upstrap

analysis results could be used to better inform sample size needed in a future similar

study.

4. Discussion

4.1. Contributions

We introduce the first open-source method for identifying walking strides with

high specificity from subsecond-level accelerometry data collected in the free-living

environment with a wrist-worn sensor. The approach is different from other approaches

that require the sensor to be worn at the ankle, thigh, or lower back, or are designed for

standardized settings, such as continuous walking on a treadmill. This method allows

the estimation of various walking characteristics, including walking cadence.

Methods were applied to data collected continuously for ∼ 4 weeks for each study

participant in a sample of 45 individuals, including 30 arthritis patients. Segmented

strides were used to estimate the daily walking cadence for each study participant.

Typical daily cadence varied between 99.6 and 130.8 steps per minute (mean (sd) 113.4
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Figure 6. Upstrap-estimated power (y-axis) for identifying the effect of SF-36 score on

estimated free-living cadence depending on the number of participants (x-axis) for the

linear mixed model (2). The horizontal dashed line corresponds to 0.8 power threshold

(y-axis). Panel columns: different SF-36 scores. Panel rows: no adjustment, Benjamini

and Hochberg correction, and Bonferroni corrections. Corrections were done assuming

multiple comparisons for k = 10 SF-36 scores.

(7.5)), and was on average slightly higher in the HV sub-group (mean (sd) 114.8 (7.3))

than in the AP sub-group (mean (sd) 112.7 (7.6)). These results are consistent with the

weighted mean of 115.2 steps per minute from eight studies observing pedestrian cadence

(Tudor-Locke & Rowe 2012). It is also consistent with the mean cadence of 1.98 steps

per second (corresponding to 118.8 steps per minute) reported in (Karas, Straczkiewicz,

Fadel, Harezlak, Crainiceanu & Urbanek 2019) using wrist-worn sensor data collected

during a continuous outdoor walk in a sample of n = 32 healthy participants.

Results indicated that daily walking cadence is significantly positively associated

with Role physical scores reported via SF-36 after adjusting for age, gender, weight, and

height. This result is aligned with some previous works, e.g. showing association of daily

walking cadence and physical function in symptomatic patients with peripheral artery

disease (Gardner et al. 2018), and itself provides new evidence of associations between

free-living walking parameters and self-reported health outcomes. While the estimated

fixed effects for age, male gender (relative to female), weight, height and a weekend day

(compared to a weekday) indicator were negatively associated with free-living cadence

across almost all of the model fits considered, only the weekend day indicator effect was

statistically significant.
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4.2. Limitations

There are several limitations to our work. First, as the data was initially collected for

a different purpose, no labels were available to evaluate the quality of the segmented

walking strides. To address this, quality control was performed without gold standards

and complemented by sensitivity analyses. Future studies could employ wireless

sensorized shoe insoles (Crea et al. 2014) to provide a gold standard of walking

segmentation; alternatively, a weaker standard could be provided by e.g. adapting

Follick et al. (1984) diary component and asking participants to mark (any subset of)

minutes spent walking during a day.

Second, our algorithm is designed to identify walking strides occurring as a sequence

of at least three, corresponding to at least 6 steps. However, many in-home tasks require

5 or fewer steps, which are not captured by our method. While our algorithm can

estimate walking cadence for bouts of 6 and more steps, it is less suited to estimating

total step count. In particular, this could result in an unexpectedly low number of

identified strides (and potentially higher daily cadence variability between the days) for

individuals who perform a majority of their walking activity in very short bouts.

Third, contextual information about walking was not available. For example,

brisk walking and light jogging may have been incorporated among segmented walking

periods. However, these estimators are not likely to affect the mode of the cadence,

which is a robust statistics to both outliers and heavy tail distributions.

Fourth, the cadence estimate obtained during the supervised component is based

only on a very short distance limited by the availability of a straight line in the

participants’ homes. Future studies could employ a more extensive supervised walking

component to allow more in-depth insight into associations between free-living cadence,

supervised cadence, and SF-36 quality of life scores. We also hypothesize that with an

interventional instead of observational study, we would be likely to identify stronger

associations because the range of measurements would be wider.

4.3. Outlook

The proposed method provides an valuable resource for the growing number of

studies that are focused on the association between health outcomes and objectively

derived walking parameters obtained in the free-living environment. It could enrich

measurements derived in future studies collecting subsecond-level accelerometry data

from wrist-worn sensors as well as discover new associations in existing studies.

5. Conclusion

We introduced the first open-source method for precise walking strides identification

in subsecond-level accelerometry data collected in free-living with a wrist-worn sensor.

Methods were applied to 4-week observation data from 30 people with and 15 people
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without arthritis. The association between the individual estimated walking cadence

and self-reported health status quantified via SF-36 survey was studied.
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Appendix A. Methods

Appendix A.1. Walking segmentation algorithm

Algorithm 1 Walking strides segmentation from (rt)t vector magnitude of subsecond-

level accelerometry data collected at wrist
INPUT:

template – A list of numeric vectors, or a numeric vector. Distinct pattern template(s) of walking
stride.
xyz – A numeric matrix of n× 3 dimension. Three-dimensional raw accelerometry data time-series.
fs – A numeric scalar. Frequency at which a time-series xyz is collected, expressed in a number of
observations per second.
sim MIN – A numeric scalar. Minimum value of correlation between pattern template(s) and (rt)t vector
magnitude of accelerometry data. Default used is 0.85.
sim MAX – A numeric scalar. Maximum value of correlation between pattern template(s) and (rt)t
vector magnitude of accelerometry data. Default used is 1.
dur MIN – A numeric scalar. Minimum value of a stride duration allowed to be identified. Expressed in
seconds. Default used is 0.8.
dur MAX – A numeric scalar. Maximum value of a stride duration allowed to be identified. Expressed
in seconds. Default used is 1.4.
ptp r MIN – A numeric scalar. Minimum value of “peak to peak” difference in (rt)t data of a stride.
Default used is 0.2.
ptp r MAX – A numeric scalar. Maximum value of “peak to peak” difference in (rt)t data of a stride.
Default used is 2.0.
vmc r MIN – A numeric scalar. Minimum value of VMC in (rt)t data of a stride. Default used is 0.05.
vmc r MAX – A numeric scalar. Maximum value of VMC in (rt)t data of a stride. Default used is 0.5.
mean abs diff med p MAX – A numeric scalar. Maximum value of MAD* of Azimuth median for 3
subsequent valid strides. Here, MAD stands for mean of 2 absolute differences between 3 subsequent
values. Default used is 0.5.
mean abs diff med t MAX – A numeric scalar. Maximum value of MAD* of Elevation median for 3
subsequent valid strides. Here, MAD stands for mean of 2 absolute differences between 3 subsequent
values. Default used is 0.2.
mean abs diff dur MAX – A numeric scalar. Maximum value of MAD* of duration time for 3 subsequent
valid strides. Here, MAD stands for mean of 2 absolute differences between 3 subsequent values. Default
used is 0.2.

PROCEDURE:
(i) Compute ptr – three-dimensional time-series of xyz after transformation from Cartesian to spherical

coordinates.
(ii) Compute out – three-columns data frame. Result of applying segmentPattern(x = ptr[,

3], x.fs = fs, template = template, pattern.dur.seq = seq(0.5, 4, length.out = 30),
similarity.measure = ‘‘cor’’, similarity.measure.thresh = -1, x.adept.ma.W = 0.2,
finetune = ‘‘maxima’’, finetune.maxima.ma.W = NULL, finetune.maxima.nbh.W = 0.6, x.cut
= TRUE, x.cut.vl = 6000), where segmentPattern() is ADEPT algorithm implementation in adept
R package. In out data frame, each row describes one identified pattern occurrence:

• column 1 – tau i - index of data vector ptr[, 3] where pattern starts
• column 2 – T i - pattern duration, expressed in vector length.
• column 3 – sim i - similarity between a pattern template and and data vector ptr[, 3].

(iii) For each ADEPT-derived data segment, compute its data statistics:
• ptp r – “peak to peak” difference of (rt)t data (ptr[, 3]),
• vmc r – VMC of (rt)t data (ptr[, 3]),
• med p – median of azimuth data (ptr[, 1]),
• med t – median of elevation data (ptr[, 2]).
• dur i – pattern duration, expressed in seconds (based on T i).

(iv) Filter ADEPT-derived data segments to keep only those individual segments which pass all the following
conditions:

• sim i >= sim MIN
• sim i <= sim MAX
• dur i >= dur MIN
• dur i <= dur MAX
• ptp r >= ptp r MIN
• ptp r <= ptp r MAX
• vmc r >= vmc r MIN
• vmc r <= vmc r MAX
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PROCEDURE (cont.):
(v) Further filter ADEPT-derived data segments to keep only those individual segments which pass all the

following conditions:
• Segment is a part of at least 3 consecutive ADEPT-derived data segments which passed the (iv)

filtering
• Segment is a part of at least 3 consecutive ADEPT-derived data segments for which mean of 2

absolute differences between 3 subsequent values of med p is <= mean abs diff med p MAX
• Segment is a part of at least 3 consecutive ADEPT-derived data segments for which mean of 2

absolute differences between 3 subsequent values of med t is <= mean abs diff med t MAX
• Segment is a part of at least 3 consecutive ADEPT-derived data segments for which mean of 2

absolute differences between 3 subsequent values of dur i is <= mean abs diff dur MAX

OUTPUT:
out final - data frame; out data frame subset to only those ADEPT-derived data segments which
passed the filtering step; these are determined by algorithm to correspond to walking strides only.
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Appendix A.2. Quality control of segmentation results

Due to a lack of gold-standard walking data labels, we cannot validate the accuracy

of our walking segmentation approach directly. Instead, we propose to conduct quality

control of the segmentation results using several weaker standards and prior expertise.

First, we performed a systematic visual inspection of segmentation results using an

internally developed visualization tool (see the tool screenshot in Figure A1 below). The

tool consisted of two main plot panels, both focusing on data of one individual at a time.

The upper panel showed a heatmap of the proportion of time identified as walking across

3 minutes-long windows of a day (x-axis), across all study days (y-axis). The bottom

panel showed (rt)t accelerometry data corresponding to the 3 minutes-long window, as

selected in the upper plot by a mouse click. Start and end time point of any identified

walking stride were annotated. In the quality control procedure, for each participant,

five windows were randomly selected in the upper plot panel; then, any strides identified

in corresponding (rt)t data were screened for quality by visual inspection.

Second, we hypothesized that if walking strides were identified correctly, we

would observe a positive association between cadence and intensity of movement on

participant’s level. For each identified stride data segment, we computed vector

magnitude count (VMC). VMC, also known as mean absolute deviation of vector

magnitude (rt)t, was shown to perform well in classifying the intensity of physical

activity in adults (Aittasalo et al. 2015). We estimated the association with the linear

mixed model (LMM) using measurements derived from individual walking strides. In

the LMM formula, we defined VMC as an outcome, defined cadence as a covariate, and

specified participant-specific intercept and cadence slope. In the LMM fit, we only used

data from participant’s strides whose duration fell into participant-specific [0.25, 0.75]

quantiles range.

Appendix A.3. Sensitivity analysis of algorithm parameters

To evaluate the robustness of the segmentation results, we performed an extensive

sensitivity analysis of the effect of input parameter values. For each algorithm

parameter, we defined a wide grid of values. We then reran the walking stride

segmentation for all participants for each of the grid values separately, while keeping the

other parameters fixed at their values used in the final segmentation. We summarized

the parameter value-specific results by computing: (a) number of identified strides, (b)

walking cadence aggregate (an empirical mode) per each study participant.
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Figure A1. A screenshot of a full window of the visualization tool used for quality

control of the walking strides segmentation results. The two main components of

the tool were the upper and bottom plot panels. For a selected participant ID, the

upper plot panel showed a heatmap with the proportion of data segments identified as

walking strides in 3 minutes-long time windows across all days of data collection. The

bottom panel showed vector magnitude of raw accelerometry data, (rt)t, corresponding

to the three minutes-long time window (as selected in the upper plot by a mouse click)

together with an annotation for start and end points of any identified walking stride

(solid and dashed red vertical lines, respectively). In many cases showed, the end

point of the n-th identified stride overlaps perfectly with a start point of the (n+1)-th

identified stride.
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Appendix A.4. Model for association between cadence and QoL measurements

Denote i = 1, . . . , 45 – index of a study participant, ni – number of valid days for i-th

participant, j = 1, . . . , ni – index of a participant-specific valid day of data collection.

Denote yij to be participant- and day-specific cadence, SF36
(k)
i , k = 1 . . . , 10 – k-th SF-

36 survey score average (of the first and last day measurements) of i-th study participant,

Ai – age of i-th study participant, Ai – age of i-th study participant, Gi – gender of

i-th study participant, Wi – weight of i-th study participant, Hi – height of i-th study

participant, I(is weekend)ij – whether or not j-th day of i-th study participant is a

weekend day, SCi – estimated supervised walking cadence for i-th study participant.

We defined the following statistical models to estimate association between cadence

and QoL measurement, separately for each of the k = 1 . . . , 10 SF-36 survey score:

yij
model (1)

= (β0 + b0i) + (β1 + b1i) I(is weekend)ij + β2SF36
(k)
i + εij, (A.1)

yij
model (2)

= (β0 + b0i) + (β1 + b1i) I(is weekend)ij + β2SF36
(k)
i (A.2)

+ β3Ai + β4Gi + β5Wi + β6Hi + εij,

yij
model (3)

= (β0 + b0i) + (β1 + b1i) I(is weekend)ij + β2SF36
(k)
i (A.3)

+ β3Ai + β4Gi + β5Wi + β6Hi + β7SCi + εij,

where b0i ∼ N (0, σ2
b0), b1i ∼ N (0, σ2

b1), εij ∼ N (0, σ2), and all b0i, b1i and εij are

mutually independent random variables.
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Appendix B. Results

Appendix B.1. Strides segmentation results

Table B1. Summary of strides segmentation results. In 3rd column, # all days

denotes the number of all days of actigraphy data collection period, # valid days –

subset of all days with sensor wear time ≥80%. In 4th column, # strides denotes

participant- and day-specific number of walking strides identified in free-living; the

values in the column are participant-specific aggregates of # strides across valid days.

In columns 5-7, daily cadence denotes participant- and day-specific daily cadence in

the free-living environment (steps per minute); the values in the columns 5-7 are

participant-specific aggregates of daily cadence across valid days. In 8th column, S.

cadence denotes supervised walking cadence estimate (steps per minute).

Participant Has # days # strides Daily cadence S. cadence
ID arthritis valid (all) median [min,max] median [min,max] mean (sd) mode

1 Yes 13 (36) 443 [242, 648] 106.2 [97.2, 108.0] 105.0 (3.0) 106.8 95.4
3 Yes 28 (33) 570 [220, 2123] 110.4 [103.2, 116.4] 110.4 (3.6) 109.2 108.6
5 Yes 12 (29) 1016 [325, 2002] 120.0 [112.2, 124.2] 119.4 (4.2) 120.0 105.0
6 Yes 21 (33) 1322 [167, 2278] 112.8 [91.8, 118.2] 109.2 (8.4) 114.6 114.6
7 Yes 28 (29) 302 [113, 1977] 112.8 [106.8, 123.0] 113.4 (4.8) 111.0 97.2
8 Yes 23 (30) 925 [70, 4656] 120.0 [106.2, 127.8] 117.6 (6.6) 121.8 111.6
9 Yes 33 (35) 823 [142, 2594] 115.8 [99.6, 122.4] 113.4 (6.6) 118.2 111.0

11 Yes 28 (30) 225 [65, 515] 113.4 [108.0, 121.8] 114.0 (3.6) 112.8 107.4
12 Yes 26 (31) 1017 [239, 1759] 120.6 [105.0, 126.6] 118.2 (6.0) 123.0 115.8
13 Yes 30 (33) 286 [88, 527] 109.8 [99.0, 120.0] 110.4 (4.2) 109.2 117.0
14 Yes 27 (33) 381 [84, 1044] 116.4 [109.2, 123.0] 116.4 (4.2) 117.6 94.8
15 Yes 25 (32) 1160 [118, 2743] 99.6 [92.4, 105.6] 99.0 (3.6) 100.2 112.8
16 Yes 25 (34) 838 [67, 1667] 109.2 [96.6, 120.6] 111.0 (4.8) 109.2 100.2
17 Yes 31 (33) 1015 [81, 2423] 104.4 [97.2, 115.8] 105.0 (4.2) 102.6 109.2

18 Yes 28 (28) 294 [30, 992] 120.0 [110.4, 142.2] 121.2 (6.6) 117.6 NA(1)

19 Yes 28 (30) 540 [229, 1753] 117.6 [102.6, 123.6] 115.8 (6.0) 118.8 88.8
22 Yes 26 (29) 498 [205, 1251] 102.6 [97.2, 109.2] 102.6 (4.2) 99.6 102.0
23 Yes 24 (33) 688 [97, 2209] 124.2 [110.4, 135.6] 123.0 (7.8) 126.0 117.0
24 Yes 29 (29) 897 [0, 3080] 115.8 [102.6, 121.2] 114.0 (4.8) 116.4 88.8
25 Yes 28 (28) 807 [222, 2587] 108.6 [102.6, 119.4] 108.6 (3.6) 108.6 94.2

26 Yes 19 (32) 228 [53, 790] 108.6 [103.8, 144.6] 112.2 (10.8) 107.4 NA(1)

27 Yes 32 (33) 146 [62, 581] 103.2 [93.6, 142.8] 105.6 (11.4) 103.2 NA(1)

28 Yes 26 (29) 327 [68, 1167] 106.8 [102.6, 116.4] 108.0 (3.6) 106.8 106.2
29 Yes 26 (42) 742 [151, 4667] 116.4 [100.2, 124.2] 114.0 (7.2) 118.8 117.0
30 Yes 26 (35) 506 [146, 1043] 107.4 [102.6, 116.4] 107.4 (3.0) 106.2 103.8
31 No 26 (36) 526 [193, 1488] 115.2 [102.0, 130.2] 114.0 (7.2) 119.4 133.2
32 No 28 (35) 590 [314, 1466] 115.2 [108.0, 123.0] 114.6 (4.8) 109.8 112.2
33 No 31 (31) 993 [353, 5806] 106.2 [100.2, 115.8] 106.2 (3.0) 105.6 106.2
34 No 27 (39) 1714 [375, 3859] 116.4 [107.4, 124.2] 115.8 (3.6) 115.8 120.6
35 No 26 (36) 264 [58, 761] 116.4 [109.8, 123.0] 117.0 (3.6) 116.4 115.8
36 No 25 (31) 752 [130, 2834] 115.8 [105.6, 120.0] 114.0 (3.6) 116.4 133.2
37 No 26 (33) 2328 [494, 3898] 107.4 [100.2, 120.0] 107.4 (4.8) 108.6 120.6
38 No 31 (33) 2681 [637, 5494] 105.6 [99.0, 109.2] 106.2 (3.0) 105.6 110.4
39 No 26 (38) 849 [230, 9045] 120.0 [101.4, 130.8] 117.6 (8.4) 122.4 109.2
40 No 28 (34) 1716 [530, 3413] 128.4 [107.4, 139.2] 126.6 (8.4) 130.8 109.8
41 No 28 (29) 584 [178, 1427] 107.4 [95.4, 121.2] 108.0 (6.6) 105.0 110.4
42 No 23 (34) 1154 [169, 3157] 120.0 [108.6, 124.2] 120.0 (4.2) 120.0 114.6
43 No 22 (30) 1334 [313, 4534] 111.0 [96.6, 120.0] 111.6 (4.8) 109.8 87.6
44 No 21 (30) 1602 [134, 2968] 115.8 [99.6, 134.4] 114.6 (7.2) 116.4 108.6
45 No 23 (28) 946 [396, 2311] 116.4 [102.0, 128.4] 115.8 (7.8) 119.4 111.6
46 Yes 27 (29) 1474 [114, 3925] 124.2 [106.2, 128.4] 121.2 (5.4) 124.2 116.4
47 Yes 27 (31) 396 [138, 2177] 108.0 [100.2, 127.8] 111.0 (7.8) 105.0 114.6
48 Yes 20 (22) 1464 [327, 3334] 118.2 [103.8, 124.2] 115.2 (6.0) 120.0 106.8
49 Yes 28 (34) 2904 [285, 4986] 120.0 [107.4, 124.2] 119.4 (3.6) 120.0 99.0
50 Yes 26 (28) 768 [111, 2294] 105.6 [94.8, 109.2] 105.0 (3.6) 105.6 101.4

(1): Unable to segment any walking stride from data corresponding to supervised walking.
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Table B2. Summary of point estimates β̂2 and 95% confidence intervals for fixed

effect of SF-36 score ([0, 100]) on free-living cadence (number of steps per minute)

in the three models: (1) without further covariates adjustment, (2) with adjustment

for age, gender, weight, height, (3) with adjustment for age, gender, weight, height,

supervised cadence.

SF-36 score name β̂2 [95% CI]

Model 1 Model 2 Model 3

1
10

× 1
10

× 1
10

×
Mental Component Summary 0.563 [-1.902, 3.135] 1.410 [-1.270, 3.805] 0.549 [-2.464, 3.561]
Physical Component Summary 0.759 [-0.445, 2.059] 1.039 [-0.278, 2.268] 1.002 [-0.503, 2.385]
General mental health 0.525 [-0.663, 1.716] 0.987 [-0.293, 2.427] 0.649 [-0.811, 2.171]
Role emotional 0.555 [-0.258, 1.419] 0.744 [-0.152, 1.616] 0.703 [-0.272, 1.669]
Social functioning 0.484 [-0.229, 1.276] 0.656 [-0.176, 1.385] 0.672 [-0.160, 1.520]
Vitality -0.062 [-0.805, 0.781] 0.342 [-0.486, 1.102] -0.059 [-0.910, 0.834]
General health 0.154 [-0.530, 0.870] 0.229 [-0.530, 0.938] 0.003 [-0.813, 0.826]
Bodily pain 0.399 [-0.341, 1.002] 0.498 [-0.074, 1.054] 0.592 [-0.028, 1.232]
Role physical 0.479 [-0.080, 1.010] 0.533 [0.002, 1.075] 0.484 [-0.118, 1.070]
Physical function 0.295 [-0.348, 0.804] 0.495 [-0.080, 1.164] 0.533 [-0.023, 1.142]

Table B3. Summary of point estimates β̂1 and 95% confidence intervals for fixed

effect of a weekend day (as compared to a week day – the reference level) on free-living

cadence (number of steps per minute) in the three models. First column (SF-36 score

name) specifies SF-36 score considered as a fixed effect in a particular model fit.

SF-36 score name β̂1 [95% CI]

Model 1 Model 2 Model 3

Mental Component Summary -1.642 [-2.824, -0.470] -1.641 [-2.781, -0.509] -1.943 [-2.952, -0.870]
Physical Component Summary -1.642 [-2.734, -0.412] -1.648 [-2.759, -0.576] -1.945 [-3.122, -0.760]
General mental health -1.642 [-2.743, -0.552] -1.642 [-2.709, -0.393] -1.944 [-3.148, -0.832]
Role emotional -1.641 [-2.769, -0.453] -1.642 [-2.845, -0.534] -1.941 [-3.188, -0.921]
Social functioning -1.642 [-2.765, -0.338] -1.644 [-2.768, -0.486] -1.941 [-3.097, -0.745]
Vitality -1.641 [-2.782, -0.576] -1.643 [-2.697, -0.663] -1.944 [-3.230, -0.855]
General health -1.642 [-2.756, -0.654] -1.644 [-2.798, -0.352] -1.944 [-3.123, -0.866]
Bodily pain -1.643 [-2.817, -0.510] -1.649 [-2.758, -0.472] -1.947 [-2.983, -0.748]
Role physical -1.645 [-2.683, -0.614] -1.651 [-2.788, -0.392] -1.947 [-3.099, -0.682]
Physical function -1.641 [-2.894, -0.562] -1.645 [-2.754, -0.521] -1.943 [-3.110, -0.798]

Table B4. Summary of point estimates β̂3 and 95% confidence intervals for fixed

effect of age on free-living cadence (number of steps per minute) in model 2 and model

3. First column (SF-36 score name) specifies SF-36 score considered as a fixed effect

in a particular model fit.

SF-36 score name β̂3 [95% CI]

Model 2 Model 3

1
10

× 1
10

×
Mental Component Summary -0.517 [-1.965, 1.092] -0.111 [-1.784, 1.372]
Physical Component Summary 0.012 [-1.140, 1.375] 0.145 [-1.076, 1.419]
General mental health -0.584 [-2.053, 0.863] -0.285 [-1.663, 1.173]
Role emotional -0.459 [-1.731, 0.938] -0.311 [-1.612, 0.943]
Social functioning -0.285 [-1.474, 1.009] -0.161 [-1.371, 1.148]
Vitality -0.208 [-1.516, 1.106] 0.102 [-1.196, 1.406]
General health -0.164 [-1.439, 1.149] 0.073 [-1.296, 1.531]
Bodily pain -0.017 [-1.390, 1.382] 0.128 [-1.035, 1.438]
Role physical -0.049 [-1.381, 1.173] 0.078 [-1.074, 1.346]
Physical function -0.032 [-1.444, 1.202] 0.110 [-1.156, 1.371]
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Table B5. Summary of point estimates β̂4 and 95% confidence intervals for fixed

effect of gender: male (as compared gender: female – the reference level) on free-living

cadence (number of steps per minute) in model 2 and model 3. First column (SF-36

score name) specifies SF-36 score considered as a fixed effect in a particular model fit.

SF-36 score name β̂4 [95% CI]

Model 2 Model 3

Mental Component Summary -4.809 [-9.138, -0.609] -4.258 [-8.176, -0.252]
Physical Component Summary -4.699 [-8.527, -0.667] -4.256 [-8.584, -0.563]
General mental health -4.556 [-8.844, -0.669] -4.102 [-8.590, 0.060]
Role emotional -4.249 [-8.328, -0.170] -3.895 [-7.985, 0.168]
Social functioning -5.002 [-8.924, -1.379] -4.626 [-8.814, -0.402]
Vitality -5.045 [-8.783, -1.285] -4.107 [-9.060, -0.133]
General health -4.863 [-8.890, -0.845] -4.185 [-8.560, 0.114]
Bodily pain -4.646 [-8.431, -0.705] -4.331 [-8.386, -0.553]
Role physical -4.325 [-8.154, -0.581] -4.012 [-7.994, -0.155]
Physical function -4.577 [-8.825, -0.591] -4.042 [-8.010, -0.270]

Table B6. Summary of point estimates β̂5 and 95% confidence intervals for fixed

effect of weight (kg) on free-living cadence (number of steps per minute) in model 2

and model 3. First column (SF-36 score name) specifies SF-36 score considered as a

fixed effect in a particular model fit.

SF-36 score name β̂5 [95% CI]

Model 2 Model 3

1
10

× 1
10

×
Mental Component Summary -0.033 [-0.158, 0.105] -0.106 [-0.258, 0.055]
Mental Component Summary -0.325 [-1.582, 1.052] -1.065 [-2.579, 0.547]
Physical Component Summary -0.366 [-1.648, 0.881] -0.928 [-2.161, 0.391]
General mental health -0.212 [-1.489, 1.382] -0.911 [-2.235, 0.519]
Role emotional -0.225 [-1.600, 1.154] -0.790 [-2.131, 0.616]
Social functioning -0.139 [-1.496, 1.126] -0.705 [-1.992, 0.621]
Vitality -0.500 [-1.784, 0.647] -1.252 [-2.623, 0.283]
General health -0.454 [-1.888, 0.908] -1.209 [-2.617, 0.214]
Bodily pain -0.335 [-1.709, 0.837] -0.861 [-2.119, 0.462]
Role physical -0.394 [-1.692, 0.716] -0.947 [-2.027, 0.407]
Physical function -0.299 [-1.644, 1.039] -0.862 [-2.132, 0.480]

Table B7. Summary of point estimates β̂6 and 95% confidence intervals for fixed

effect of height (cm) on free-living cadence (number of steps per minute) in model 2

and model 3. First column (SF-36 score name) specifies SF-36 score considered as a

fixed effect in a particular model fit.

SF-36 score name β̂6 [95% CI]

Model 2 Model 3

1
10

× 1
10

×
Mental Component Summary -1.597 [-4.048, 0.929] -1.024 [-3.817, 1.836]
Physical Component Summary -1.716 [-4.044, 0.931] -1.529 [-4.161, 1.094]
General mental health -1.928 [-4.852, 0.524] -1.331 [-4.066, 1.037]
Role emotional -2.064 [-4.567, 0.470] -1.676 [-4.327, 0.886]
Social functioning -1.716 [-4.345, 0.691] -1.446 [-4.065, 1.080]
Vitality -1.394 [-3.841, 1.257] -0.815 [-3.596, 1.716]
General health -1.335 [-3.878, 1.395] -0.873 [-3.761, 1.691]
Bodily pain -1.740 [-4.037, 0.734] -1.510 [-4.023, 1.101]
Role physical -1.838 [-4.240, 0.759] -1.588 [-4.134, 1.100]
Physical function -2.028 [-5.082, 0.434] -1.986 [-4.428, 0.678]
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Table B8. Summary of point estimates β̂7 and 95% confidence intervals for fixed effect

of supervised cadence (number of steps per minute) on free-living cadence (number of

steps per minute) in model 3. First column (SF-36 score name) specifies SF-36 score

considered as a fixed effect in a particular model fit.

SF-36 score name β̂6 [95% CI]

Model 3

1
10

×
Mental Component Summary 0.089 [-1.413, 1.657]
Physical Component Summary -0.298 [-1.967, 1.441]
General mental health 0.005 [-1.507, 1.371]
Role emotional -0.157 [-1.768, 1.303]
Social functioning -0.399 [-1.932, 1.220]
Vitality 0.200 [-1.608, 1.785]
General health 0.156 [-1.381, 1.770]
Bodily pain -0.436 [-1.991, 1.273]
Role physical -0.387 [-2.022, 1.171]
Physical function -0.406 [-1.950, 1.082]
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Appendix B.2. Quality control of segmentation results

Accelerometry (rt)t data and, specifically, their segments identified as walking strides

were systematically screened for quality with the visualization tool (see Figure A1 in

Appendix A.2). We did not identify any case where the algorithm-identified stride

data clearly seemed to be a false-positive; on the contrary, we observed (rt)t data not

identified as a stride of which we either believed it could be a false negative, or we were

unable to determine based on visual inspection. While we lack means of quantifying

the false positive and false negative cases, we qualitatively conclude that the algorithm

with its default parameters appears to be characterized by high specificity.

As an additional measure of plausibility of the segmented strides, the relationship

between vector magnitude count (VMC) and cadence was evaluated using a linear

mixed model with random slope and intercept (Figure B1). We hypothesized that

faster stride should overall be associated with more intense motion. Indeed, for all

but two participants (ID 26 and 27), we observe positive slope of the fitted relationship,

ranging from −0.00143 to 0.0059 (mean (sd) 0.00288 (0.00161)). The result supports the

hypothesized positive association between data-estimated participant-specific cadence

and intensity of the movement.

Figure B1. Thin black lines represent fitted values of walking stride vector magnitude

count (VMC; y-axis) for various values of walking cadence (x-axis; steps per minute)

for each study participant; the number label denotes participant ID. The thick black

line represents average fitted values for the study population.

Appendix B.3. Sensitivity analysis of algorithm parameters

Figures B2 and B3 below show results of extensive sensitivity analysis of the effect

of algorithm parameters’ values on strides segmentation. Overall, stride numbers and

cadence estimates were stable around the values selected for the present analyses.
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Figure B2. Results of sensitivity analysis of segmentation algorithm parameters:

minimum similarity between walking stride template and observed data (1st row data

panel), stride duration range [s] (2nd row data panel), range of difference between

vector magnitude maximum and minimum, range of VMC (3rd row data panel). Each

trajectory denotes the most typical participant’s cadence expressed in steps per minute

(an empirical mode; left column data panel) and number of identified walking strides

(right column data panel) obtained for the specific parameter value considered while

keeping the other parameters fixed at their respective final values. The blue vertical

dashed line denotes the parameter’s final value.



Estimation of free-living walking cadence from wrist-worn sensor accelerometry data 29

Figure B3. Results of sensitivity analysis of segmentation algorithm parameters:

maximum MAD* of Azimuth median for 3 subsequent valid strides (1st row data

panel), maximum MAD* of Elevation median for 3 subsequent valid strides (2nd row

data panel), maximum MAD* of duration time [s] for 3 subsequent valid strides (3rd

row data panel). Here, “MAD” stands for mean of 2 absolute differences between 3

subsequent values. Each trajectory denotes the most typical participant’s participant’s

cadence expressed in steps per minute (an empirical mode; left column data panel) and

number of identified walking strides (right column data panel) obtained for the specific

parameter value considered while keeping the other parameters fixed at their respective

final values. The blue vertical dashed line denotes the parameter’s final value.
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REFERENCES 33

Brachat, S., Rooks, D. S. & Clay, I. (2019), ‘Continuous digital monitoring of walking

speed in frail elderly patients: Noninterventional validation study and longitudinal

clinical trial’, JMIR Mhealth Uhealth 7(11), e15191.

O’Brien, M. W., Kivell, M. J., Wojcik, W. R., d’Entremont, G., Kimmerly, D. S. &

Fowles, J. R. (2018), ‘Step Rate Thresholds Associated with Moderate and Vigorous

Physical Activity in Adults’, Int J Environ Res Public Health 15(11).

Perraudin, C. G. M., Illiano, V. P., Calvo, F., O’Hare, E., Donnelly, S. C., Mullan, R. H.,

Sander, O., Caulfield, B. & Dorn, J. F. (2018), ‘Observational study of a wearable

sensor and smartphone application supporting unsupervised exercises to assess pain

and stiffness’, Digital Biomarkers 2(3), 106–125.

Samson, M. M., Crowe, A., de Vreede, P. L., Dessens, J. A. G., Duursma, S. A. &

Verhaar, H. J. J. (2001), ‘Differences in gait parameters at a preferred walking speed in

healthy subjects due to age, height and body weigh’, Aging Clinical and Experimental

Research (13), 16–21.

Selles, R., Formanoy, M., Bussmann, J., Janssens, P. & Stam, H. (2005), ‘Automated

estimation of initial and terminal contact timing using accelerometers; development

and validation in transtibial amputees and controls’, IEEE Transactions on Neural

Systems and Rehabilitation Engineering 13, 81–88.

Soaz, C. & Diepold, K. (2016), ‘Step Detection and Parameterization for Gait

Assessment Using a Single Waist-Worn Accelerometer’, IEEE Transactions on

Biomedical Engineering 63(5), 933–942.

Straczkiewicz, M., Glynn, N. W. & Harezlak, J. (2019), ‘On Placement, Location

and Orientation of Wrist-Worn Tri-Axial Accelerometers during Free-Living

Measurements’, Sensors (Basel) 19(9).

Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M., Brach, J.,

Chandler, J., Cawthon, P., Connor, E. B., Nevitt, M., Visser, M., Kritchevsky, S.,

Badinelli, S., Harris, T., Newman, A. B., Cauley, J., Ferrucci, L. & Guralnik, J.

(2011), ‘Gait speed and survival in older adults’, JAMA 305(1), 50–58.

Troiano, R. P., McClain, J. J., Brychta, R. J. & Chen, K. Y. (2014), ‘Evolution of

accelerometer methods for physical activity research’, Br J Sports Med 48(13), 1019–

1023.

Tudor-Locke, C. & Rowe, D. A. (2012), ‘Using cadence to study free-living ambulatory

behaviour’, Sports Med 42(5), 381–398.

Urbanek, J. K., Harezlak, J., Glynn, N. W., Harris, T., Crainiceanu, C. & Zipunnikov, V.

(2017), ‘Stride variability measures derived from wrist- and hip-worn accelerometers’,

Gait and Posture 52, 217–223.

Van Ancum, J. M., van Schooten, K. S., Jonkman, N. H., Huijben, B., van Lummel,

R. C., Meskers, C. G., Maier, A. B. & Pijnappels, M. (2019), ‘Gait speed assessed by

a 4-m walk test is not representative of daily-life gait speed in community-dwelling

adults’, Maturitas 121, 28–34.



REFERENCES 34

Wang, J., Lin, C., Jeen-Shing Wang, Che-Wei Lin, Yang, Y.-T. C. & Yu-Jen Ho (2012),

‘Walking Pattern Classification and Walking Distance Estimation Algorithms Using

Gait Phase Information’, EEE Transactions on Biomedical Engineering 59, 2884–

2892.

Ware, J. & Sherbourne, C. (1992), ‘The mos 36-ltem short-form health survey (sf-36):

I. conceptual framework and item selection’, Medical Care 30, 473–483.

Willemsen, A. T. M., Bloemhof, F. & Boom, H. B. (1990), ‘Automatic Stance-Swing

Phase Detection from Accelerometer Data for Peroneal Nerve Stimulation’, IEEE

Transactions on Biomedical Engineering 37(12), 1201–1208.

Ying, H., Silex, C., Schnitzer, A., Leonhardt, S. & Schiek, M. (2007), ‘Automatic Step

Detection in the Accelerometer Signal’, 4th International Workshop on Wearable and

Implantable Body Sensor Networks (BSN 2007) 13, 80–85.


	Introduction
	Motivation
	Wearable accelerometers in health studies
	Methodology gaps
	Challenges
	This paper's contribution

	Methods
	Study participants and data collection
	Recruitment procedure.
	Actigraphy data collection and preprocessing.
	Onsite visit.
	SF-36 survey data collection.

	Segmentation of individual walking strides in raw accelerometry data
	Three-axial accelerometry signal preprocessing.
	Walking stride pattern segmentation with the ADEPT method.
	Identification of free-living walking strides from ADEPT-segmented data.
	Estimation of walking strides during supervised walking.

	Estimating the association between cadence and SF-36 survey outcomes
	Daily cadence.
	Model for association between cadence and QoL measurements.
	Sample size calculation with upstrap method.


	Results
	Characteristics of study participants
	Estimated walking strides
	Quality control of segmentation results
	ADEPT sensitivity analysis to choice of parameters
	Association between free-living walking cadence and SF-36 survey outcomes
	Upstrap results.


	Discussion
	Contributions
	Limitations
	Outlook

	Conclusion
	Acknowledgments
	Ethical statement
	Methods
	Walking segmentation algorithm
	Quality control of segmentation results
	Sensitivity analysis of algorithm parameters
	Model for association between cadence and QoL measurements

	Results
	Strides segmentation results
	Quality control of segmentation results
	Sensitivity analysis of algorithm parameters


