
ARTICLE TEMPLATE

Estimating Knee Movement Patterns of Recreational Runners

Across Training Sessions Using Multilevel Functional Regression

Models

Marcos Matabuenaa1, Marta Karasb1, Sherveen Riazatic,d, Nick Capland, Philip R.
Hayesd

a Centro Singular de Investigación en Tecnoloǵıas Intelixentes, Universidad de Santiago de
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d Department of Sport Exercise and Rehabilitation, Faculty of Health and Life Sciences,
Northumbria University, Newcastle upon Tyne, UK

ARTICLE HISTORY

Compiled August 12, 2022

ABSTRACT
Modern wearable monitors and laboratory equipment allow the recording of high-
frequency data that can be used to quantify human movement. However, currently,
data analysis approaches in these domains remain limited. This paper proposes a new
framework to analyze biomechanical patterns in sport training data recorded across
multiple training sessions using multilevel functional models. We apply the methods
to subsecond-level data of knee location trajectories collected in 19 recreational
runners during a medium-intensity continuous run (MICR) and a high-intensity
interval training (HIIT) session, with multiple steps recorded in each participant-
session. We estimate functional intra-class correlation coefficient to evaluate the
reliability of recorded measurements across multiple sessions of the same training
type. Furthermore, we obtained a vectorial representation of the three hierarchical
levels of the data and visualize them in a low-dimensional space. Finally, we
quantified the differences between genders and between two training types using
functional multilevel regression models that incorporate covariate information. We
provide an overview of the relevant methods and make both data and the R code
for all analyses freely available online on GitHub. Thus, this work can serve as a
helpful reference for practitioners and guide for a broader audience of researchers
interested in modeling repeated functional measures at different resolution levels in
the context of biomechanics and sports science applications.

keywords: Biomechanics; Knee movement; Multilevel functional data analysis;
Patterns; Subsecond-level data; Wearable sensors.

1. Introduction

Recent advances in technology have led to the ever-increasing popularity of
wearable technology in health research [Straczkiewicz et al., 2021]. Modern sensors
can monitor an individual’s motor activity with great accuracy and measure various
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physiological and biomechanical variables in a near-continuous manner. This provides
an opportunity to have a detailed assessment of an athlete’s physical capability
and performance [Lencioni et al., 2019], and to schedule optimal interventions
[Kosorok and Laber, 2019, Buford et al., 2013]. Promising fields for implementing
these novel strategies are sports training and biomechanics [Ibrahim, 2021,
Uhlrich et al., 2020].

1.1. Wearable Sensors: Opportunities in Sports and Biomechanics

Although we are in the early stages of this technological revolution, the first
research papers are appearing that use through high-resolution data gathered
with biosensors to answer unknown and complex questions about training
load [Cardinale and Varley, 2017], daily biomechanical patterns [Karas et al., 2019],
and injury prediction [Bittencourt et al., 2016, Malone et al., 2017]. Furthermore,
sensor data may enable us to build predictive models that support decision-
making and help optimize the performance [Matabuena and Rodŕıguez-López, 2019,
Hemingway et al., 2020, Piatrikova et al., 2021]. For example, several recent works
provide new epidemiological knowledge using biomechanical data of human locomotion
[Karas et al., 2021, Warmenhoven et al., 2020]. Other papers have tried to predict
sports injuries [Rossi et al., 2018] or other motor or neurological diseases prematurely
[Belić et al., 2019], or even the impact of therapy together with their prognosis in the
recovery phase after surgery [Karas et al., 2020].

Importantly, with the boom of wearable devices, their use is increasingly common
among professional athletes and the general population, such as amateur runners.
Thus, the remote control of athlete training and even monitoring their daily routine
outside of sports activity is feasible and opens a broad spectrum of opportunities in
biomechanics applications.

1.2. Quantifying Biomechanics Patterns in Walking and Running:
Methodological Challenges

In both sports and general populations, abnormal movement patterns are synonymous
with muscular and motor problems, risk of injury, or even the appearance of
severe neurological diseases such as Parkinson’s [Morris et al., 2001]. Therefore,
characterizing movement patterns and detecting their abnormalities in biological
activities such as walking and running, are essential.

The predominant data analysis practice in gait biomechanics is to summarize the
curve recorded for each stride using several statistical metrics and apply standard
multivariate techniques. However, this traditional approach yields a substantial loss
of information given that gait data recorded is functional, such as a cycle of gait
movement.

A more detailed and meaningful analysis can be attained by using
a complete stride cycle with functional data analysis (FDA) techniques
[Febrero Bande and Oviedo de la Fuente, 2012, Warmenhoven et al., 2020]. In FDA
applications for biomechanics, the general procedure is to normalize data curves
collected at a fixed body location for each step into the [0, 1] interval, compute the
mean of the multiple curves recorded, and create an average functional curve for
analysis. However, this procedure can be suboptimal because the constructed mean
representation ignores the individual variability between the distinct steps of the same
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individual – a crucial feature in evaluating the movement patterns in some settings. In
addition, the mean curve statistic can be very sensitive to outliers that are frequently
observed in biomechanical data. This is particularly true in measuring movements
performed at high or low speed, where sensor and human variability often increase.
Moreover, we often need to compare the effect of interventions along with the different
training sessions on different days, and for this, we have several repeated measures
per individual in different periods. In such cases, a more suitable approach might be
to employ multilevel functional data analysis (MFDA) models that allow accounting
for a natural hierarchy in data [Li et al., 2015]. For example, using MFDA models, we
can estimate biomechanical patterns using data curves from multiple gait cycles, using
data from a significant fraction of or even from a complete training session. MFDA
methods also capture the variations in different periods at an intra-inter individual
level and evaluate the changes produced along with relevant outcomes at different
resolution levels among individuals.

Surprisingly, there is little use of FDA techniques within the applications literature,
either in sports or other clinical areas [Ullah and Finch, 2013]. This might be partially
due to FDA being a relatively novel modeling approach and, consequently, a lack of
broader knowledge about the value of using the FDA for biomedical and biomechanics
data.

1.3. This Paper’s Contributions

This work demonstrates statistical modeling using MFDA models to characterize
knee biomechanical patterns along with two training type sessions. Specifically, we
use subsecond-level data of a knee location, recorded in three dimensions, collected
in 19 recreational runners during (a) medium-intensity continuous run (MICR); (b)
high-intensity interval training (HIIT) sessions, with 20 steps recorded during each
participant-session. Using multilevel functional models, we estimate functional intra-
class correlation coefficients to evaluate the reliability of measurements across two
separate HIIT sessions. We also computed the scores of different hierarchical levels
of multilevel functional models to analyze variability patterns between individuals,
runs, and strides, and to visually compare the scores by gender. We further quantify
differences in knee position trajectories between genders and between the two
intensities of exercise sessions (MICR vs. HIIT). Finally, we provide the overview of the
relevant methods and make both data and the R code for all analyses freely available
online on GitHub (martakarass/biomechanics-manuscript). For the biomechanical
practitioner’s audience, this paper provides a methodological guide and read-and-go
R code examples to address questions similar to the following we tackle:

(1) What is the reliability of functional running measurements in two independent
HIIT running sessions?

(2) What are the different modes of variability at different hierarchical levels in the
data (e.g., individual level, session level, and a running stride level)?

(3) What are the population-level differences in knee location trajectories between
MICR and HIIT running sessions and between genders?

To date, several works have studied the etiology of running-related knee injuries
in recreational runners, some even using three-dimensional time series analysis
[Messier et al., 2008]. However, to the best of our knowledge, no previous studies have
compared biomechanical changes during HIIT and MICR training, nor investigated
the reliability of biomechanical measures at the knee in two or more training sessions.
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2. Methods

2.1. Study Design and Population

Data used in this manuscript were collected in a study that recruited 20 participants
to complete two types of energy expenditure-matched running sessions: a medium-
intensity continuous run (MICR) and a high-intensity interval training (HIIT) session.
Participant enrollment criteria and study design have previously been reported in
detail in [Riazati et al., 2020]. In short, 20 healthy, experienced runners (10 women
and 10 men) were recruited.

For HIIT sessions, athletes ran 6 × 800 meters intervals at a pace of 1 km/h below
their maximum aerobic speed with 1 : 1 recovery time. For the MICR sessions, the
athletes completed a continuous run halfway between the speeds at lactate threshold
and the lactate turn point. The duration of the MICR session was individualized to
yield the same estimated energy expenditure as the HIIT session. All sessions were
conducted at the same time of the day to avoid diurnal variation. All sessions were
performed in an environmentally controlled laboratory setting, with all the athletes
using the same treadmill. Running kinematics used in this analysis were recorded at the
start of the final minute of each run. Measurements were recorded in three dimensions
with the Vicon Nexus motion analysis system (Vicon Motion Systems Ltd, Oxford,
United Kingdom) at a frequency of 500 Hz. Data recorded with the motion analysis
system were further segmented to extract individual stance phases.

This work uses data from two independent HIIT sessions and one MICR session.
Specifically, 20 cycles of the stride stance phase for 19 participants were analyzed. Data
for one of the participants were excluded from the analysis set due to missing data in
some parts of running strides. Our analysis focuses on subsecond-level recordings of
knee segment trajectories within each of the three dimensions, x, y, and z.

2.2. Why use functional data analysis?

A core element of many functional data analysis methods is to approximate the vector
observations recorded for each individual as a through a basis of functions. This
conceptual leap from multivariate euclidean space to functional space presents several
advantages compared to high-dimensional multivariate data analysis techniques.

• The information can be represented and summarized in low-dimensional spaces
with the same or more accuracy than with multivariate analysis techniques. As a
consequence, functional data analysis may lead to inferential methods with more
powerful and robust hypothesis testing, and more accurate predictive models.
Moreover, the computational efficiency of the algorithms may increase.

• The methods can also reduce noise and be more robust towards outlier data
points. More advanced techniques exist to remove and filter the measurement
error.

• Functional regression models can be evaluated at any point of the continuous
domain and not only within the finite set of domain points where the data
were recorded. This presents opportunity for better interpretability of the results
where the observed data is a function, recorded on a discrete grid, defined on
some continuous domain (e.g., gait cycle).

• Analyses can evaluate rates of change of the underlying function.
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2.3. Multilevel Functional Data Analysis (MFDA) Models

This subsection provides foundations and then reviews the methods used in our
statistical data analysis. We first review frameworks for standard functional principal
component analysis (FPCA) and multilevel FPCA, then outline several general
formulations of multilevel functional data analysis (MFDA) models, and discuss intra-
class correlation coefficient and hypothesis testing between different levels. While
provided for completeness, some technical parts of this presentation are kept in the
Supplementary Material for the succinctness of the main text.

2.3.1. Functional Principal Component Analysis (FPCA)

Functional principal component analysis (FPCA) technique, an extension of
multivariate principal components analysis, is widely used in FDA to describe the
variability of a sample of curves when one curve per subject is available. In summary,
FPCA decomposes the space of curves into principal directions of variation.

To describe FPCA framework, let X (t), t ∈ [0, 1], be a random function with mean
µ (t) = E (X (t)) and covariance function Σ (t, s) = E (X (t) − µ (t)) (X (s) − µ (s))
for all t, s ∈ [0, 1]. The heart of many FDA models is based on calculating modes of
variability of the random function X (t) based on the spectral decomposition of the
covariance operator Σ (·, ·) in a set of eigenfunctions {ei (·)}∞i=1 and eigenvalues {λi}∞i=1,
where λ1 ≥ λ2 ≥ · · · . Specifically, from the decomposition of Karhunen-Loève we have

X (t) = µ (t) +

∞∑
k=1

ckek (t) ,

where ck =
∫ 1
0 (X (t) − µ (t)) ek(t)dt are uncorrelated random variables with mean zero

and variance λk. These variables are usually known as scores or loading variables.
In the real-world FDA setting, we typically consider n realizations, generally

independent, of the process X (·), denote X1 (·), . . . , Xn (·). Also, we typically only
observe a sample of n vectors, assume each vector of length m, denote X1, . . . , Xn,
sampled in a grid {0 ≤ t1 < · · · < tm ≤ 1}, where Xi

j = Xi (tj) for all i = 1, . . . , n,
j = 1, . . . ,m.

A given functional sample can be used to estimate mean function µ and covariance
function Σ,

µ̂ (tj) =
1

n

n∑
i=1

Xi (tj) ,

Σ̂ (tj , tk) =
1

n

n∑
i=1

(
Xi (tj) − µ̂ (tj)

) (
Xi (tk) − µ̂ (tk)

)
,

for all j, k = 1, . . . ,m.
In many applications where observations are subject to a large measurement error,

a smoothing step is taken in the above procedure to ensure the optimal performance
of the empirical estimator Σ̂. Three different smoothing strategies have been generally
used in the literature [Shang, 2014, Cederbaum et al., 2018]: (1) smoothing of the
original functional data; (2) introduction of a regularization term in the estimation of

Σ̂; and (3) direct application of a smoothing procedure in the raw estimation of Σ̂.
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Next, eigenvectors {êi}mi=1 and eigenvalues {λ̂i}mi=1 can be estimated from the

empirical covariance function Σ̂ via the spectral theory of linear algebra, similarly
as in the context of classical PCA in multivariate statistics. Finally, K (K < m)

eigenvectors {êi}Ki=1 and eigenvalues {λ̂i}Ki=1 can be selected and used to provide the
following decomposition:

Xi(tj) ≈ µ̂(tj) +

K∑
k=1

ĉikê
k
j

for i = 1, . . . , n, j = 1, . . . ,m, and ĉik = ⟨Xi − µ̂, êk⟩, where ⟨, ⟩ denotes
the usual scalar-product, and êkj is the j-th component of the eigenvector êk. In
applications, a small K < m is often sufficient to capture the important modes of
variations in the elements of the random sample. More details of these procedures
can be found in the reviews and general books of functional data analysis, where
different estimation procedures of the number of components, K, are established
[Shang, 2014, Kokoszka and Reimherr, 2017, Li et al., 2013].

2.3.2. Multilevel Functional Principal Component Analysis (MFPCA)

In the previous subsection (Sect. 2.3.1), we presented a FPCA procedure applicable
when a random functions are measured once for n independent units (e.g.,
n individuals). In practice, it is common to have several repeated functional
measurements for each individual in the data set. For example, in sports applications,
functional data of an an athlete may be collected at multiple points in time (e.g., over
the training session and/or when investigating the training load throughout a season).
Such settings yield multiple functional observations per individual, and thus yield a
correlation structure in data for whom the previously discussed FPCA procedure may
be inadequate. To review the statistical framework for multilevel FPCA (MFPCA),
we first expand the notation introduced in Sect. 2.3.1 while employing a specific setup
of our biomechanics real data example.

Let Xi,j,k (t), t ∈ [0, 1], be a random function – a k-th stride for j-th race in the
i-th individual, for i = 1, . . . , n, j = 1, . . . , ni, k = 1, . . . ,Ki,j ; for simplicity, onward,
assume that Ki,j = M and ni = J for all i = 1, . . . , n. For illustration as is the model
that we use in the study-case, we first consider the following three-way functional
nested ANOVA model

Xi,j,k (t) = µ (t) + Zi (t) + W i,j (t) + U i,j,k (t) + ϵi,j,k (t) (1)

for i = 1, . . . , n, j = 1, . . . , J , k = 1, . . . ,M . In Equation 1, µ (t) is the mean global,
W i,j (t) is the residual subject- and race-specific deviation from the global mean, and
U i,j,k (t) is the residual subject- race- and stride-specific deviation from the global
mean. In this framework, µ (t) is treated as a fixed function, while Zi (t), W i,j (t), and
U i,j,k (t) are treated as a random function of mean zero. Moreover, with the proposal
of identification correctly the model, we assume that Zi (t), W i,j (t), and U i,j,k (t),
are random uncorrelated functions. In the literature, functions Zi (t)’s, W i,j (t)’s,
U i,j,k (t)’s are known as the 1-level, 2-level and 3-level functions, respectively. We
note that we introduce for convention a additional random error ϵi,j,k (t) ∼ N

(
0, σ2

)
in terms to identify the model.
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Again, the MFPCA framework relies on the Karhunen-Loève decomposition. For
example, for the model defined in Equation 1, we have

Xi,j,k (t) = µ(t) +

∞∑
r=1

cire
(1)
r (t) +

∞∑
r=1

di,jr e(2)r (t) +

∞∑
r=1

f i,j,k
r e(3)r (t) (2)

for = 1, . . . , n, j = 1, . . . , J , k = 1, . . . ,M . In the above, {e(1)r }∞r=1, {e(2)r }∞r=1, and

{e(3)r }∞r=1, are the eigenfunctions related to the random functions of levels 1, 2 and 3,

respectively, while {cir}∞r=1, {d
i,j
r }∞r=1, {f

i,j,k
r }∞r=1 are the eigenvalues of levels 1, 2, and

3, respectively.
The eigenfunctions and eigenvalues of the model defined in Equation 2 can be

derived from covariance funtions: ΣT (s, t) = Cov
(
Xi,j,k (s) , Xi,j,k (t)

)
– “total”

covariance function, ΣW (s, t) = Cov(W i,j (s) ,W i,j (t)) – “between” covariance
function (covariance between the units of the second level while keeping the effect
of the first level fixed), ΣZ (s, t) = Cov(Zi (s) , Zi (t)) – “between” covariance function
(covariance between the units of the first level). As explained in Appendix A in the
Supplementary Material, a method of moments can be used to obtain these covariance
operators.

2.3.3. MFDA Models: More General Formulations

Different levels of hierarchy may appear in real problems that can be nested (e.g.,
three-way functional ANOVA model presented in Sect. 2.3.2) or crossed. For example,
following [Shou et al., 2015], Table 1 presents a number of possible data hierarchy
scenarios corresponding model formulations.

Table 1. Structured functional models. For nested models, i = 1, 2, . . . , n;j = 1, 2, . . . , ni; k = 1, 2, . . . ,Kij ;

i1 = 1, 2, . . . , I1, i2 = 1, 2, . . . , I2i1, . . . , ir = 1, 2, . . . , iri1 ,i2,...,ir1
. For crossed designs, i = 1, 2, . . . , n; j =

1, 2, . . . , J ; k = 1, 2, . . . , nij ; (C2s) ”Two-way sub” stands for ”Two-way crossed design with subsampling”;
(CM) contains combinations of anys (s = 1, 2, . . . , r) subset of the latent processes, as well as repeated

measurements within each cell. S1, S2, . . . , Sd ∈ {ik1
ik2

. . . , iks , u : k1, k2, . . . , ks ∈ (1, 2, . . . , r) , u ∈
(∅, 1, 2, . . . , Ii1i2,...,ir ), s ≤ r}, u is the index for repeated observation in cell (ik1, ik2, . . . , ikr). ϵ (t) is a random
error N

(
0, σ2

)
.

Model Model formula
Nested (N1) One-way Xi(t) = µ(t) + Zi(t) + ϵi(t)

(N2) Two-way Xi,j (t) = µ (t) + Zi (t) + W i,j + ϵi,j (t)
(N3) Three-way Xi,j,k (t) = µ (t) + Zi (t) + W i,j + U i,j,k + ϵi,j,k (t)

(NM) Multi-way Xi1,i2,...,ir (t) = µ (t) + Ri1
(1)(t) + Ri2

(2) + . . . + Rir
(r) + ϵi1,i2,...,ir (t)

Crossed (C2) Two-way Xi,j (t) = µ (t) + ηj (t) + Zi (t) + W i,j + ϵi,j (t)
(C2s) Two-way sub Xi,j,k (t) = µ (t) + ηj + Zi (t) + W i,j + U i,j,k + ϵi,j,k (t)
(CM) Multi-way Xi1,i2,...,iru(t) = µ (t) + RSi (t) + RS2 + . . . + RSr + ϵi1,i2,...,iru (t)

The models specified in Table 1 share the same model formula structure: X (t) =
µ (t) + (

∑
latent processes) + ϵ (t), where µ (t) is the mean curve or fixed effect and

ϵ (t) is a white noise, ϵ (t) ∼ N
(
0, σ2

)
for all t ∈ [0, 1]. The latent processes are

assumed to be zero-mean and square-integrable so that they are identifiable, and the
standard statistical assumptions for scalar outcomes can be generalized to functional
data. In this way, the total variability of a functional outcome is decomposed into a
sum of process-specific variations plus σ2. For these models, the algorithm details of
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estimation procedure are provided in Appendix B in the Supplementary Material.

2.3.4. Intra-class correlation coefficient (ICC)

When several repeated measurements are collected from a subject over different
days or other periods, it is often of interest to determine how much variability is
explained by the subjects’ effect and how much by collecting measurements over
different levels of the data hierarchy. This problem is known in the literature as
estimating the coefficient of intra-class correlation (ICC) [Müller and Büttner, 1994]
that represents the variability arising from measuring a subject in conditions that are
assumed to be standardized across different tests. The estimation of ICC is crucial,
for example, in the field of clinical laboratory testing, where one often wants to use
clinical variables that are not modified abruptly between days as a result of a device’s
measurement error or by intra-day variability of individuals [Selvin et al., 2007].
In biomechanics and exercise sciences, the ICC estimation is critical in searching
for objective criteria to assess performance and control the individual’s degree of
fatigue [Van Gheluwe et al., 2002, Koldenhoven and Hertel, 2018]. For example, while
a variable may have high variability, it may pose a helpful criterion for decision-making.
In such cases, it is necessary to make several measurements to capture that variable
accurately and ICC can allow us to quantify how many measures need to be made to
capture the variable’s distribution accurately.

To define ICC for a functional model in our setting, consider the (N3) model (see
Table 1) given by

Xi,j,k (t) = µ (t) + Zi (t) + W i,j (t) + U i,j,k (t) + ϵi,j,k (t) .

For a fixed t ∈ [0, 1], by analogy with a univariate non-functional case, the
proportion of the total variability explained by the subjects’ effect at point t is given
by

ρ(t) =
V ar

(
Zi (t)

)
V ar (Zi (t) + W i,j (t) + U i,j,k (t) + ϵi,j,k (t))

, (3)

where ρ(t) is the intra-class correlation coefficient at point t.
The ICC formula from Equation 3 can be generalized as a global measure following

[Shou et al., 2013]. In particular, we divide the variability generated by the hierarchy
associated with subjects by the sum of all variability sources:

ρ =

∑∞
k=1 λ

(1)
k∑∞

k=1 λ
(1)
k +

∑∞
k=1 λ

(2)
k +

∑∞
k=1 λ

(3)
k + σ2

.

2.3.5. MFDA Models incorporating covariate information

In many applications, together with a functional outcome variable Xi,j (·), t ∈ [0, 1],
for i = 1, . . . , n and j = 1, . . . , ni, we have additional dynamic or static information
available about a subject, e.g. demographics or a clinical condition, that we may want
to incorporate in the model as fixed and/or random effects. Consider a multilevel
functional regression model that incorporates information about an individual’s
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characteristics, given by

Xi,j (t) = ⟨M i,j , β (t)⟩ + ⟨Zi,j , ui (t)⟩ + ϵi,j (t) , (4)

for i = 1, . . . , n and j = 1, . . . , ni, where Zi,j ∈ Rm denote a random variable measure
collected in random design, Mi,j ∈ Rp denote fixed-effect terms in the model, β : t ∈
[0, 1] → β (t) ∈ Rp and ui : t ∈ [0, 1] → ui (t) ∈ Rm for i = 1, . . . , n, denote coefficient
functions for the fixed and random effect terms.

Obtaining a global estimation of the Equation 4 model is challenging. Recent work
by [Cui et al., 2021] proposes an efficient estimation strategy of such complex models
using the following steps (see [Cui et al., 2021] for further details):

(1) For each point t of the observed functional data grid, fit a separate point-wise
generalized linear mixed model using standard multilevel software.

(2) Smooth the model coefficients obtained at different points t with a linear
smoother along the functional domain.

(3) Obtain a global model inference with a joint confidence band using analytics
approach for Gaussian data or using bootstrap for Gaussian/non-Gaussian data.

An important topic for practitioners is the connection between global p-value
and pointwise confidence intervals [Sergazinov et al., 2022, Pini and Vantini, 2017].
For example, following [Sergazinov et al., 2022], for each covariate, we can define
a natural global p-value as a minuscule level α in the joint confidence interval
that does not contain zero. Although other alternatives exist in the literature
[Pini and Vantini, 2017], the [Sergazinov et al., 2022] approach appears to us easier
to apply in terms of interpretability.

2.4. Statistical Analysis

We applied the methods outlined above to our real data in the following steps. First,
we smoothed the raw biomechanical functional profiles with a linear smoother to
remove potential measurement error. Then, we visualized functional biomechanics
profiles collected during two different HIIT sessions, and inspected the differences
at an individual level. We also computed and visualized sample mean and standard
deviation of functional profiles across genders and races.

We further fitted a three-level multilevel model without covariates (see model
N3 in Table 1) to data collected during two different HIIT sessions to decompose
the different modes of variability between the hierarchical levels and to obtain a
vectorial representation of units that compose the model. With this decomposition, we
visualized the scores from hierarchical levels 1,2, and 3, inspected scores differences by
gender, computed cumulative variance explained by subsequent functional principal
components at each hierarchical level, and visualized first two eigenfunctions at each
hierarchical level.

Finally, to quantify the differences in biomechanical patterns between HITT and
MICR session types and between the genders, we fitted a multilevel functional model
to data collected during one HIIT session and one MICR session. In that model, we
set knee location trajectory for each stride as a functional outcome, included a fixed
effect for gender (coded 1 for male and 0 for female), a fixed effect for run session
type (coded 1 for HIIT and 0 for MICR), and a subject-specific random intercept and
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random slope for the run type term. Formally, the fitted model formula is given by

Y i,j(t) = β0(t) + [male]iβ1(t) + [HIIT]i,jβ2(t)

+ u1i(t) + [HIIT]i,ju2i(t)

+ ϵi,j(t),

where i denotes the participant’s index, j denotes participant’s functional observation
index, [male]i is sex indicator of i-th participant (equal to 1 for male and 0 for female),
[HIIT]i,j is session type indicator of j-th functional observation of i-th participant

(equal to 1 for HIIT and 0 for MICR), Y i,j(t) is j-th functional observation of
i-th participant, β0(t), β1(t), β2(t)is fixed effect coefficient functions, u1i(t), u2i(t) is
random-effect coefficient functions, ϵi,j(t) is residual error process.

All analyses were performed using statistical software R. The data and the R code
used can be found on GitHub (martakarass/biomechanics-manuscript).

3. Results

3.1. Descriptive analysis

Figure 1 shows knee location trajectories raw data collected from 20 running strides
per individual during two HIIT sessions. Each plot corresponds to data of one
participant. Measurements are shown with separate colors for data recorded from
x, y and z dimensions of a 3D plane. By visual inspection, we can see there are
individuals for which there is little difference in their biomechanical stride patterns
within an axis between the two HIIT sessions (e.g., participant with ID 7). For others,
noticeable differences are present, demonstrating higher intra-individual variability
(e.g., participant with ID 18). In addition, the observed stride patterns exhibit a
noticeable between-individual variability.

Figure 2 shows sample mean and ± 95% confidence intervals (CIs) of the mean
computed point-wise from raw data collected from 20 running strides per individual
during one HIIT and one MICR session. Sample statistics were computed separately
for data collected from each measurement axis (x, y, z), in strata according to gender
(female, male) and race type (MICR, HIIT). In this descriptive analysis, we observe
significant differences between genders for each measurement axis data along whole
functional domain (stride cycle). Differences between run types were signifcant at
subsets of the functional domain for data from measurement axis x and y. However,
this exploratory analysis does not account for repeated observations per individual, and
does not provide a more holistic picture by simultaneously incorporating information
from gender and race type. In addition, the functional nature of the recorded
measurements is not exploited, leaving potential opportunities for increased inference
efficiency unused. This is the rational for the use of the multilevel functional models.

3.2. Estimating scores and ICC with multilevel functional model (without
covariates)

A three-level multilevel functional (N3) model was fitted for knee location data
collected during two HIIT sessions, separately for data from x, y and z dimensions of a
3D plane. Figure 3 shows values of the first two scores along the three hierarchical levels
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Figure 1. Knee location trajectories in recorded along 20 strides in two HIIT sessions for 19 participants.

Each plot shows data for one participant from both HIIT sessions. Measurements from the same axis are

marked with the same color.

considered in the models: level 1 – an individual (1 value per participant), level 2 – a
run session (1×2 values per participant), level 3 – a running stride (1×2×20 values per
participant). Table 2 summarizes data from Figure 3 by providing sample mean and
95% CIs of the mean for scores across strata by gender (female, male). Figure 4 shows
cumulative variance explained by subsequent functional principal components of level
1, 2 and 3, calculated with N3 multilevel models. In addition, Figure C1 in Appendix
C in the Supplementary Material shows the first two eigenfunctions associated with
each of the three hierarchical levels of the N3 multilevel models.

In this analysis, the first eigenvalue alone captures more than 90% of variability
at levels 1 and 2 for models for data collected at each of three axes (x, y and z); at
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Figure 2. Sample mean and ± 95% confidence intervals (CIs) of the mean computed point-wise from knee

location data collected from 20 running strides per individual during one HIIT and one MICR session. Sample

statistics were computed separately for data collected from each measurement axis (x, y, z), in strata according
to gender (female, male) and race type (MICR, HIIT).

hierarchical level 3, between two to three components are needed to cross the 90%
threshold of variability explained.

From a visual inspection of Figure 3, we seem to observe distinct patterns in the
distribution of scores between males (“M”) and females (“F”); for example, females’
scores are mostly centered at the top-left corner of the top-left plot in the Figure
3. Table 2 provides the numeric observations from figure 3. In general, they not we
observe differences in point estimates of the mean of scores between genders. However,
we are not statistically significant according to the 95% confidence intervals. Given
the limited sample size, this marginal analysis requires more data to obtain enough
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power. A potential solution is to use a more integrated approach and to analyze all
covariate information available in our setting simultaneously.

Using the variability decomposition derived from the model, we estimated the
functional ICC to be 0.55, 0.54, and 0.61 for measurements from x, y and z dimensions
of a 3D plane, respectively. The ICC values obtained indicate that, in general, the
reproducibility of measurements across the two HIIT tests was moderate.

Figure 3. Scatterplots of functional scores 1 and 2 of level 1, 2 and 3, calculated with N3 multilevel models.
Each horizontal plots panel corresponds to one measurement axis (x, y, z). Point colors denote participant ID.
Point shapes denote participant gender (“F” for female, “M” for male).

3.3. Estimating the run type and gender effect with multilevel functional
model (with covariates)

Figure 5 shows the results of estimating knee location trajectory with a multilevel
functional model for each stride set as functional outcome, a fixed effect of gender
(coded 1 for male and 0 for female), a fixed effect of run type (coded 1 for HIIT

13



Table 2. Sample mean and 95% confidence intervals (CIs) of the mean for two scores (score 1, score 2) along

the three hierarchical levels (level 1, level 2, level 3) considered in the three-level multilevel functional model,
summarized separately for females and males.

Axis Score Score Score mean [95% CI] Score mean [95% CI]
level index Female Male

1 x Level 1 Score 1 207.7 [183.7, 231.7] 239.0 [220.4, 257.6]
2 x Level 1 Score 2 -8.4 [-13.1, -3.7] -23.2 [-31.4, -14.9]
3 x Level 2 Score 1 104.0 [88.6, 119.4] 121.3 [106.0, 136.6]
4 x Level 2 Score 2 25.3 [20.9, 29.8] 23.0 [19.1, 26.8]
5 x Level 3 Score 1 5.0 [4.1, 6.0] 5.8 [4.7, 6.9]
6 x Level 3 Score 2 1.8 [1.4, 2.3] 2.0 [1.6, 2.5]
7 y Level 1 Score 1 -7.3 [-19.9, 5.3] -30.2 [-64.6, 4.2]
8 y Level 1 Score 2 -1.0 [-4.6, 2.6] -0.1 [-3.1, 3.0]
9 y Level 2 Score 1 -3.8 [-18.8, 11.2] -15.3 [-36.0, 5.4]
10 y Level 2 Score 2 0.7 [-1.1, 2.6] 0.6 [-1.8, 3.1]
11 y Level 3 Score 1 -0.2 [-0.5, 0.2] -0.8 [-1.3, -0.2]
12 y Level 3 Score 2 0.1 [-0.1, 0.2] 0.0 [-0.2, 0.3]
13 z Level 1 Score 1 68.1 [22.0, 114.2] 149.2 [114.8, 183.5]
14 z Level 1 Score 2 36.6 [27.0, 46.1] 44.8 [40.1, 49.6]
15 z Level 2 Score 1 36.0 [11.7, 60.2] 76.5 [46.0, 107.0]
16 z Level 2 Score 2 16.1 [10.1, 22.2] 15.6 [10.7, 20.5]
17 z Level 3 Score 1 1.6 [1.1, 2.2] 3.4 [2.9, 4.0]
18 z Level 3 Score 2 0.8 [0.4, 1.2] 1.8 [1.4, 2.2]

Figure 4. Cumulative variance explained by subsequent functional principal components of level 1, 2 and
3, calculated with N3 multilevel models. Results are color-coded, with three colors representing results from

separate measurement axis-specific models (x, y, z).

and 0 for MICR), and a subject-specific random intercept term. Smoothed coefficient
estimates are denoted using blue dashed lines. Point-wise and joint 95% confidence
intervals are shown as the dark and light gray shaded area, respectively.

Following the notion of a global p-value (see Sect. 2.3.5), the results indicate
statistically significant (at α = 0.05) time-varying effect of session type for the
measurements from x, y and z dimensions of a 3D plane. The effect is present despite
the two different session types were performed with the same energy expenditure.
The corresponding confidence intervals are relatively narrow – likely due to the fact
we included participant-specific random slope for run session type. For the gender
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differences, the effect is borderline-significant for measurements from z dimension of a
3D plane (and is not significant for the other dimensions of measurement).

Notably, our results show more differences in the extreme phases (beginning, end) of
the biomechanic cycle than in the middle phase regarding uncertainty (gender effect)
and value magnitude (race effect for data from measurement axis x and z). This can
be as explained as follows: the middle of the stride is the ground contact phase, i.e.,
the foot is in contact with the ground, and it is, therefore, unlikely to differ between
the two-run types. However, stride mechanics vary with running speed. As running
speed increases, there is an increasing reliance on forces generated at the hip rather
than the ankle [Dorn et al., 2012]. The net result is an increased range of movement
with a higher knee lift and longer back swing. The differences at the extremes of the
stride found in this study can be hence explained by the difference in running speed
between the two-run types.

4. Discussion

Knee injuries are one of the most frequent problems faced by recreational runners
[Van Gent et al., 2007]. Therefore, an accurate characterization of the biomechanical
changes that occur in typical training sessions can be critical in identifying the etiology
of injuries [Donoghue et al., 2008] and developing predictive models to detect injury
risk [Ceyssens et al., 2019]. Here, we have illustrated how to use multilevel functional
models to exploit functional information from running strides to: (i) examine the
different modes of variability of data at different levels of hierarchical structure and
obtain a specific vector-valued data representation; (ii) measure the reliability between
two training sessions of the same type; (iii) analyze the biomechanical differences
between HIIT vs. MICR race types and the gender effect, an unexplored research
topic in biomechanics literature. In particular, we believe we are the first to employ
functional multilevel models with covariate information in biomechanics literature,
which we did to address the issue (iii). The data and R code to reproduce all presented
results are publically available on GitHub (martakarass/biomechanics-manuscript).

The complete analysis of each cycle through functional analysis techniques
that analyze the curve in its totality has led to more nuanced findings
[Donoghue et al., 2008]. Traditional techniques that analyze either fixed angles, the
average angle, the range of movement or other measures summarized, result in the
loss of information that its use entails. Complementary, interesting problems can be
identified when using more informative gait points. Recent statistical methodologies
can be used to address this problem [Berrendero et al., 2016, Poß et al., 2020].

Functional multilevel models are an essential weapon in the challenge to
exploit information from monitoring athletes or patients, to optimize decision-
making using different sources of information and measurements, made at different
resolution levels. These tools can help integrate and analyze the information
together, obtain a representation of the individuals along with different levels of
hierarchy, and establish the different forms of variability in the different levels
considered. These tools are remarkable if we want to analyze all training records or
physiological variables of a group of athletes over a season or different micro-macro-
cycles [Lambert and Borresen, 2010, Halson, 2014]. For example, there is not yet a
sufficiently good methodology to represent the information inherently as proposed
by these models [Matabuena and Rodŕıguez-López, 2019, Piatrikova et al., 2021,
Kalkhoven et al., 2021]. Despite being an exciting research topic with high relevance,
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Figure 5. Fixed effects estimates (dashed blue line), 95% point-wise confidence intervals (dark gray shaded

area), and 95% joint confidence intervals (light gray shaded area) in multilevel functional regression with
biomechanical profiles set as functional response, covariates for gender (coded 1 for male, 0 for female) and

race type (coded 1 for HIIT, 0 for CR) and participant-specific random functions for race type (coded 1 for

HIIT, 0 for CR).

we believe that there are not many methodologies to address relevant problems in
biomechanics to date. For example, a specific need of this field could be to build a
multilevel model that considers the different time lengths of a step, and does not lose
the information on the step geometry with the standardization of all the strides to the
[0, 1] interval.

The multilevel models have allowed us to calculate the intraclass correlation
coefficient between the two interval training sessions taking into account the 20 steps
recorded in each session. To the best of our knowledge, this is a novel approach
in this area since the traditional approaches previously used to measure reliability
rely on the compression of information in the average curve and only between two
conditions [Pini et al., 2019]. This constitutes an important analytic advance, since
with the inclusion of the 20 steps in the model in each test, we have more information,
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and with the new procedure, we can see if there are statistical differences between
the different levels of hierarchy or groups of patients/athletes taking into account the
potential differences in the study design.

An important aspect to consider in analyzing the results is that the individuals’
movement patterns seem unique. This is not new, and several papers have exempted
the individuality of human walking and running [Horst et al., 2019]. In this sense, since
the biomechanical patterns are probably grouped in clusters [Phinyomark et al., 2015,
Jauhiainen et al., 2020], standard hypothesis tests applied to the whole sample are
not the best way to establish biomechanical differences. There are some discrepancies
between studies when examining these issues. Also, in the biomechanics literature,
as in other biomedical literature areas, there is some controversy about the use of
p-value [Benjamin et al., 2018], and the use of other approaches such as effect size
[Browne, 2010] or e-values [Vovk and Wang, 2019] may be recommended.

A limitation of this study is a relatively small sample size (19 participants), together
with the fact that we are analyzing the biomechanical variations of the knee, without
taking into account the possible multivariate structure of knee movement. Recently,
some papers have emerged about this topic in another application [Park et al., 2022,
Carroll et al., 2021]. However, the literature with the multilevel model is sparse
[Volkmann et al., 2021]. The present importance of computational and methodological
limitations (see the discussion about the additive model for [Sergazinov et al., 2022])
In this paper, due to the reduced number of data, we think that we can gain a greater
interpretation in this type of study of a more exploratory character with this procedure.
Moreover, this work’s main purpose is to illustrate the use of classical multilevel models
with biomechanical data.

The rise of biosensors [Ferber et al., 2016, Phinyomark et al., 2018,
Straczkiewicz et al., 2021] in the area of biomechanics and medicine is causing
an unprecedented revolution in the evaluation of athletes and patients care. It is likely
that in the coming years, many of the clinical decisions will also be supported by
the values predicted from the algorithms in many contexts, such as the prediction of
injuries [Clermont et al., 2020, Van Hooren et al., 2020] or optimal surgery recovery
[Karas et al., 2020, Kowalski et al., 2021] so in sport and general populations.
Undoubtedly, the introduction of the data analysis techniques discussed here will help
practitioners analyze objects that vary in a continuum repeatedly and that appear
more and more frequently in biomedical data [Dunn et al., 2018].
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de Cultura, Educación e Universidade (Centro de investigación de Galicia
accreditation 2019-2022 ED431G-2019/04 and the European Union (European
Regional Development Fund - ERDF).

Ethics Statement

The studies involving human participants were reviewed and approved by Northumbria
University. The patients/participants provided their written informed consent to
participate in this study.

17



References
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Mitchell, L. J., Gonzalez, J. T., Sousa, A. C., and Williams, S. (2021). Monitoring
the heart rate variability responses to training loads in competitive swimmers using
a smartphone application and the banister impulse-response model. International
Journal of Sports Physiology and Performance, 1(aop):1–9.

[Pini et al., 2019] Pini, A., Markström, J. L., and Schelin, L. (2019). Test–retest
reliability measures for curve data: An overview with recommendations and
supplementary code. Sports biomechanics, pages 1–22.

[Pini and Vantini, 2017] Pini, A. and Vantini, S. (2017). Interval-wise testing for
functional data. Journal of Nonparametric Statistics, 29(2):407–424.

[Poß et al., 2020] Poß, D., Liebl, D., Kneip, A., Eisenbarth, H., Wager, T. D., and
Barrett, L. F. (2020). Superconsistent estimation of points of impact in non-
parametric regression with functional predictors. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 82(4):1115–1140.

[Riazati et al., 2020] Riazati, S., Caplan, N., Matabuena, M., and Hayes, P. R. (2020).
Fatigue induced changes in muscle strength and gait following two different intensity,
energy expenditure matched runs. Frontiers in Bioengineering and Biotechnology,
8:360.

[Rossi et al., 2018] Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernández, J.,
and Medina, D. (2018). Effective injury forecasting in soccer with gps training data
and machine learning. PloS one, 13(7):e0201264.

[Selvin et al., 2007] Selvin, E., Crainiceanu, C. M., Brancati, F. L., and Coresh, J.
(2007). Short-term variability in measures of glycemia and implications for the

20



classification of diabetes. Archives of internal medicine, 167(14):1545–1551.
[Sergazinov et al., 2022] Sergazinov, R., Leroux, A., Cui, E., Crainiceanu, C., Aurora,

R. N., Punjabi, N. M., and Gaynanova, I. (2022). A case study of glucose levels
during sleep using fast function on scalar regression inference. arXiv preprint
arXiv:2205.08439.

[Shang, 2014] Shang, H. L. (2014). A survey of functional principal component
analysis. AStA Advances in Statistical Analysis, 98(2):121–142.

[Shou et al., 2013] Shou, H., Eloyan, A., Lee, S., Zipunnikov, V., Crainiceanu, A.,
Nebel, M., Caffo, B., Lindquist, M., and Crainiceanu, C. M. (2013). Quantifying
the reliability of image replication studies: the image intraclass correlation coefficient
(i2c2). Cognitive, Affective, & Behavioral Neuroscience, 13(4):714–724.

[Shou et al., 2015] Shou, H., Zipunnikov, V., Crainiceanu, C. M., and Greven, S.
(2015). Structured functional principal component analysis. Biometrics, 71(1):247–
257.

[Straczkiewicz et al., 2021] Straczkiewicz, M., James, P., and Onnela, J.-P. (2021).
A systematic review of smartphone-based human activity recognition methods for
health research. NPJ Digital Medicine, 4(1):1–15.

[Uhlrich et al., 2020] Uhlrich, S. D., Kolesar, J. A., Kidziński,  L., Boswell, M. A.,
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Appendix A. Multilevel Functional Principal Component Analysis
(MFPCA)

The foremost step in a multilevel functional component analysis model is to rely on
the Karhunen-Loève decomposition. For example, in the three-way functional nested
ANOVA model, we have

Xi,j,k (t) = µ(t) +

∞∑
r=1

cire
(1)
r (t) +

∞∑
r=1

di,jr e(2)r (t) +

∞∑
r=1

f i,j,k
r e(3)r (t) (A1)

for = 1, . . . , n, j = 1, . . . , J , k = 1, . . . ,M . In the above, {e(1)r }∞r=1, {e
(2)
r }∞r=1, and

{e(3)r }∞r=1, are the eigenfunctions related to the random functions of levels 1, 2 and 3,

respectively, while {cir}∞r=1, {d
i,j
r }∞r=1, {f

i,j,k
r }∞r=1 are the eigenvalues of levels 1, 2, and

3, respectively.
Importantly, in this models, the eigenfunctions are ortho-normal basis in the space

of square functions, but in general the functions that compose each function bases
are not orthogonal with each other, which implies that the estimation of scores is not
simple in practice, a topic that we discuss later. Moreover, score‘s {cir}∞r=1, {d

i,j
r }∞r=1,

and {f i,j,k
r }∞r=1 are random variables of mean zero and with variance are given by

covariance functions of stochastic process Zi(t)’s, W i,j(t)’s and (U i,j,k (t)+ ϵi,j,k (t))′s.
Below, we explain how to calculate the auto-functions and auto-values of the model

defined in the Equation A1 with the estimation of specific covariance operator. We
have
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E

([
Xi,j,k(t)−X l,u,v(t)

] [
Xi,j,k(s)−X l,u,v(s)

]T)
=


2KU (t, s) if i=l, j=u, k ̸= v

2[KW (t, s) +KU (t, s)] if i=l, j ̸= u

2[KW (t, s) +KU (t, s) +KZ(t, s)] if i ̸= l.

,

(A2)
where KU (t, s) = Cov(U i,j,k (t) , U i,j,k (s))+ σ2, KW (t, s) = Cov(W i,j (t) ,W i,j (s)),

KZ(t, s) = Cov(Zi (t) , Zi (s)).. Following the previous identity, with the methods of
moments using empirical estimators, we can estimate easily each covariance operator.
Further details are available here [Shou et al., 2015].

Appendix B. Multilevel Functional Data Analysis (MFDA) Models:
General comments about estimations

Both nested and crossover models can be used to employ a general estimation
strategies. Below we summarize the steps necessary to do so, which are analogous
to those explained in the previous Section:

(1) Estimate the means and covariance functions involved in the differents models
via moment methods.

(2) With the estimated covariance functions, calculate an appropriate number of K-
auto-values and auto-vectors along the different levels of hierarchy that collect
the different modes of variability in a precise way so that the problem we want
to address.

(3) Estimate the scores using the BLUP estimator [Robinson et al., 1991], as
it is done in [Shou et al., 2015] based on [Zipunnikov et al., 2011] and
[Crainiceanu et al., 2009].

In the step 1, to estimate the covariance functions in the different models mentioned
above, a general estimation strategy proposed in [Koch, 1968] can be used. For
example, following the notation and problem (N2) defined in the previous Section,

Σ̂T , Σ̂W , Σ̂B, can be expressed with the following sandwich structure:

Σ̂T = XGTX
T Σ̂W = XGWXT Σ̂Z = XGZX

T , (B1)

where X is a matrix of size (nJ) × m that records the different observations of
all the individuals and levels of hierarchy, while GT , GW and GZ are design-specific
matrices of dimension m×m.

In particular, the usual co-variance matrix Σ̂T is written as Σ̂T = XGTX
T , where

GT = 1
nJ (I − 11T ) where I denotes the identity matrix, and with 1, we denote m

length vector with all ones. More details about these procedures, as well as about the
selection of the components and the score estimation, can be found in the following
references [Di et al., 2009, Shou et al., 2015].
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Appendix C. Results

Figure C1. Eigenfunctions 1 and 2, calculated with N3 multilevel models. Each horizontal plots panel
corresponds to one measurement axis-specific N3 model (x, y, z). Each vertical plots panel shows the first

two eigenfunctions associated with one of the three hierarchical levels (level 1, level 2, level 2).
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