
Methods for fast processing of time-series:
runstats R package

3rd webinar OSS developers in physical behavior field

Marta Karas
Nov 5, 2019

Outline

● Fast time-series processing

○ Rolling statistics

○ Speed-up rolling mean/sd/var with 1-liner trick

○ Speed-up rolling cor/cov with convolution theorem

● runstats R package

○ CRAN: https://cran.r-project.org/web/packages/runstats/index.html

○ GitHub: https://github.com/martakarass/runstats (considered in this presentation*)

*Commit link for package version used to generate results showed in this presentation.

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats
https://github.com/martakarass/runstats/commit/2438347a6047957cc421a5eb099437d90b8c77f1

Fast time-series processing: motivation

Recall: raw accelerometry data is voluminous

● Example: raw accelerometry data collected from 1 patient, 1 week,
frequency=100Hz yields 3 * 100 * 60 * 60 * 24 * 7 = 181,440,000 float values

Some often used operations:

● Smoothing (e.g. running window average)
● Running variance, running correlation (with some short signal)

must be done fast

Example 1: running window average (running mean)

vector x: len(x) = N

(window length) scalar win_n

out[1] mean()

out[2] mean()

out[N-n+1] mean()

Output:

Input:

Simple R is not fast: running window average

Running window average of a time-series
RunningMean.sapply <- function(x, win_n){
 l_x <- length(x)
 sapply(1:(l_x - win_n + 1), function(i){
 mean(x[i:(i + win_n - 1)])
 })
}

N <- 10000000 # 10,000,000
x <- runif(N)
win_n <- 100

system.time({
 RunningMean.sapply(x, win_n)
})
user system elapsed
75.880 3.545 79.678

~18h of fs=100Hz 1-dimensional time-series

~ 1.25 minute of execution

Example 2: running correlation

vector x: len(x) = N

vector y: len(y) = n, n<N

out[1] cor(,)

out[2] cor(,)

out[N-n+1] cor(,)

Output:

Input:

Simple R is not fast: running correlation

Running covariance of long time-series x and short(er) y
RunningCor.sapply <- function(x, y){
 l_x <- length(x)
 l_y <- length(y)
 sapply(1:(l_x - l_y + 1), function(i){
 cor(x[i:(i+l_y-1)], y)
 })
}

N <- 10000000 # 10,000,000
n <- 100
x <- runif(N)
y <- runif(n)

system.time({
 RunningCor.sapply(x, y)
})
user system elapsed
516.994 2.554 519.946

~18h of fs=100Hz 1-dimensional time-series

~ 8.5 minutes of execution

Outline

● Fast time-series processing

○ Rolling statistics

○ Speed-up rolling mean/sd/var with 1-liner trick

○ Speed-up rolling cor/cov with convolution theorem

● runstats R package

○ CRAN: https://cran.r-project.org/web/packages/runstats/index.html

○ GitHub: https://github.com/martakarass/runstats (considered in this presentation)

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats

1-liner trick implemented in runstats R package

Goal: compute x vector running average over moving window of length W

runningMean(x, W){

diff(c(0, cumsum(x)), lag = W) / W

}

Acknowledgement: this piece is the most recent improvement contributed by Lacey
Etzkorn (PhD student at JHU Biostat); previously it had been previously implemented
also via FFT.

runstats R package: running window average

Running window average of a time-series
RunningMean.sapply <- function(x, win_n){
 l_x <- length(x)
 sapply(1:(l_x - win_n + 1), function(i){
 mean(x[i:(i + win_n - 1)])
 })
}

N <- 10000000 # 10,000,000
x <- runif(N)
win_n <- 100

system.time({
 RunningMean.sapply(x, win_n)
})
user system elapsed
75.880 3.545 79.678

system.time({
 runstats::RunningMean(x, win_n)
})
user system elapsed
0.216 0.019 0.237

~18h of fs=100Hz 1-dimensional time-series

~ 1.25 minute of execution

~ 0.2 seconds of execution (~350x faster)

Outline

● Fast time-series processing

○ Rolling statistics

○ Speed-up rolling mean/sd/var with 1-liner trick

○ Speed-up rolling cor/cov with convolution theorem

● runstats R package

○ CRAN: https://cran.r-project.org/web/packages/runstats/index.html

○ GitHub: https://github.com/martakarass/runstats (considered in this presentation)

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats

Speed-up computing with convolution theorem [1/]

Speed-up computing with convolution theorem [2/]

Speed-up computing with convolution theorem [5/]

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov(x, y){

(...)

covxy <- (conv(x, y) - W * meanx * meany)/(W - 1)

}

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov(x, y){

(...)

covxy <- (conv(x, y) - W * meanx * meany)/(W - 1)

}

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov(x, y){

(...)

covxy <- (conv(x, y) - W * meanx * meany)/(W - 1)

}

convolution of (longer) x and (shorter) y
:= "rolling product" of x and y

(precomputed) rolling mean of x

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov(x, y){

(...)

covxy <- (conv(x, y) - W * meanx * meany)/(W - 1)

}

convolution of (longer) x and (shorter) y
:= "rolling product" of x and y

(precomputed) rolling mean of x

Running covariance of long time-series x and short(er) y
RunningCor.sapply <- function(x, y){
 l_x <- length(x)
 l_y <- length(y)
 sapply(1:(l_x - l_y + 1), function(i){
 cor(x[i:(i+l_y-1)], y)
 })
}

N <- 10000000 # 10,000,000
n <- 100
x <- runif(N)
y <- runif(n)

system.time({
 RunningCor.sapply(x, y)
})
user system elapsed
516.994 2.554 519.946

system.time({
 runstats::RunningCor(x, y)
})
user system elapsed
5.922 0.452 6.383

~18h of fs=100Hz 1-dimensional time-series

~ 8.5 minutes of execution

runstats R package: running correlation

~ 6 seconds of execution (~87x faster)

runstats R package

Provides methods for fast computation of running sample statistics for a
time-series.

Implemented running sample statistics:

● mean, standard deviation, and variance over a fixed-length window
of time-series,

● correlation, covariance, and Euclidean distance (L2 norm) between
short-time pattern and time-series.

CRAN index: https://cran.r-project.org/web/packages/runstats/index.html

https://cran.r-project.org/web/packages/runstats/index.html

runstats R package - a comparator example

Dane Van Domelen (personal website)

● Former post doc in JHU Biostat
● Biostatistician at Karyopharm Therapeutics Inc
● Authored a bunch of interesting R packages
● R package dvmisc: Convenience Functions,

Moving Window Statistics, and Graphics
○ includes sliding_cor , sliding_cov functions

implemented in rcpp; very fast!

Note:

● Implementation of convolution via convolution theorem + FFT is a
general way that can be used to speed-up convolution in mostly
any language (i.e. Python)

● Nearest future plans for runstats update: search for fastest
FFT implementation I can plug to use in R (perhaps rcpp?)

https://vandomed.github.io/
https://cran.r-project.org/web/packages/dvmisc/index.html

