Methods for fast processing of time-series:
runstats R package

3rd webinar OSS developers in physical behavior field

Marta Karas
Nov 5, 2019

Outline

e Fast time-series processing

o Rolling statistics

o Speed-up rolling mean/sd/var with 1-liner trick

o Speed-up rolling cor/cov with convolution theorem
e runstats R package

o CRAN: https://cran.r-project.org/web/packages/runstats/index.htmi

o GitHub: https:/github.com/martakarass/runstats (considered in this presentation®)

*Commit link for package version used to generate results showed in this presentation.

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats
https://github.com/martakarass/runstats/commit/2438347a6047957cc421a5eb099437d90b8c77f1

Fast time-series processing: motivation

Recall: raw accelerometry data is voluminous

e Example: raw accelerometry data collected from 1 patient, 1 week,
frequency=100Hz yields 3 * 100 * 60 * 60 * 24 * 7 = 181,440,000 float values

Some often used operations:

e Smoothing (e.g. running window average)
e Running variance, running correlation (with some short signal)

must be done fast

Example 1: running window average (running mean)

Input:

vector x: len(x) = N

(window length) scalar win_n

Output:

ouety mean([N)
ouetz) mean([TN)

Simple R is not fast: running window average

Running window average of a time-series
RunningMean.sapply <- function(x, win n) {
1 x <- length(x)
sapply(1: (1_x - win n + 1), function(i) {
mean(x[i: (i + win n - 1)])
})
}

N <- 10000000 # 10,000,000
X <- runif (N)
win n <- 100

~18h of fs=100Hz 1-dimensional time-series

system. time ({
RunningMean.sapply(x, win_n)

})

user system elapsed

~ 1.25 minute of execution
75.880 3.545 79.678

Example 2: running correlation

Input:

vector x: len(x) = N

vectory: len(y) = n, n<N

Output:

out[1] cor(

[T
outizl corf T)

Simple R is not fast: running correlation

Running covariance of long time-series x and short(er) y
RunningCor.sapply <- function(x, y){
1 x <- length(x)
1l y <- length(y)
sapply(1l:(1_x - 1 y + 1), function(i) {
cor(x[i: (i+l y-1)], y)
})

N <- 10000000 # 10,000,000 ~18h of fs=100Hz 1-dimensional time-series
n <- 100

X <- runif (N)

y <- runif (n)

system. time ({
RunningCor.sapply(x, y)

b

user system elapsed

¥ 516.994 G SEA SELE GG ~ 8.5 minutes of execution

Outline

e Fast time-series processing
o Rolling statistics
o Speed-up rolling mean/sd/var with 1-liner trick
o Speed-up rolling cor/cov with convolution theorem
e runstats R package

o CRAN: https://cran.r-project.org/web/packages/runstats/index.htmi

o GitHub: https:/github.com/martakarass/runstats (considered in this presentation)

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats

1-liner trick implemented in runstats R package

Goal: compute x vector running average over moving window of length w

runningMean (x, W) {

diff(c(0, cumsum(x)), lag=W) / W

Acknowledgement: this piece is the most recent improvement contributed by Lacey
Etzkorn (PhD student at JHU Biostat); previously it had been previously implemented
also via FFT.

runstats R package: running window average

Running window average of a time-series
RunningMean.sapply <- function(x, win n) {
1 x <- length(x)
sapply(1: (1_x - win n + 1), function(i) {
mean (x[i: (i + win n - 1)])

3]

N <- 10000000 # 10,000,000 ~18h of fs=100Hz 1-dimensional time-series

X <- runif (N)
win n <- 100

system. time ({
RunningMean.sapply(x, win_n)

3]

user system elapsed

75.880 3.545 79.678

~ 1.25 minute of execution

system. time ({
runstats: :RunningMean (x, win_n)

3]

wuser system elapsed
0.216 0.019 0.237

Outline

e Fast time-series processing

o Rolling statistics

o Speed-up rolling mean/sd/var with 1-liner trick

o Speed-up rolling cor/cov with convolution theorem
e runstats R package

o CRAN: https://cran.r-project.org/web/packages/runstats/index.htmi

o GitHub: https:/github.com/martakarass/runstats (considered in this presentation)

https://cran.r-project.org/web/packages/runstats/index.html
https://github.com/martakarass/runstats

Speed-up computing with convolution theorem [1/]

Convolution
Convolution is a mathematical operation on two functions, denote f and

g, defined as the integral of the product of the two functions after one is
reversed and shifted:

oo

(F * g)(t) = / f(r)g(t — 7)dr. (1)

—00

Discrete convolution
For functions x, h defined on the set Z of integers, the discrete
convolution of x and h is given by

oo

(xxh)[nl= Y xlilAln—1i], neZ (2)

I=—00

Speed-up computing with convolution theorem [2/]

Discrete convolution, finite support
Consider x, h defined on the finite set:

x[n], 0<n<M-1, len(x) =M, (3)
h[n], 0<n< N-1, len(h) = N. (4)
Then
M—1 N—1
(xxh)nl= Y x[ilhln—i] =) hlilx[n—i], 0<n<M+N-1.
i=0 i=0

(5)

Running product of two vectors

Consider denoting:

@ x - a (longer) numeric vector of length M, for which we want to
compute running window average with window length m,

@ y - a (shorter) numeric vector of length m, m < M.
Then

m—1 m—1
(xxy)nl = > ylilxn— i1 =) _ ylilX[i] (7)

is a product of vector y and vector x” which is a (reverse of) part of x
starting from x's index i = (n— m+1) to i = n.

Computing whole convolution function (x x y)[n] gives values of product of
subsequent windows of x and vector y.

Convolution theorem (where the speed-up comes from)

The convolution theorem states that, under suitable conditions, the
Fourier transform of a convolution of two functions f,g is the pointwise
product of their Fourier transforms:

Fif xg} =F{f} Flg} (8)

where:

o F{f xg}, F{f} and F{g} — Fourier transform operators for f x g, f
and g, respectively,

o F{f}() = [f(x)e ?™*€dx — Fourier transform of a function f.

By applying the inverse Fourier transform, we get

fxg=F Y{F{f} F{g}}. (9)

Speed-up computing with convolution theorem [5/]

The convolution representation given by RHS of

f+g=F {F{f} F{g}}

can be used for fast implementation of convolution:
@ The standard convolution algorithm has quadratic computational
complexity, O (n?).
@ Using above result, and using a fast Fourier transform (FFT)

algorithm that computes the discrete Fourier transform of a sequence,
the complexity of the convolution can be reduced to O(nlog n).

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov (x, vy) {

(...)

covxy <- (conv(x, y) - W * meanx * meany)/(W - 1)

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov (x, y) {

(...)

COVXY <—[(conv(x, y) - W * meanx * meany)/(W - 1)]

Equivalent formulas for unbiased sample covariance estimator

[ﬁ (D i1 Tayi — nflf_y)]: LS (@i —Z) (v — 7)

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov (x, vy) {

(...)

covxy <- ([conv(x, y)] - W ** meany) /(W - 1)
} / \

convolution of (longer) x and (shorter) y (precomputed) rolling mean of x
:= "rolling product” of x and y

Convolution used in runstats R package

Goal: compute rolling covariance between (longer) x and (shorter) y

RunningCov (x, y) {

(...)

covxy <- ([conv(x, y)] - W ** meany) /(W - 1)
} / \

convolution of (longer) x and (shorter) y (precomputed) rolling mean of x
:= "rolling product” of x and y

I

Computing whole convolution function (x * y)[n] gives values of product of
subsequent windows of x and vector y.

runstats R package: running correlation

Running covariance of long time-series x and short(er) y
RunningCor.sapply <- function(x, y){
1 x <- length(x)
1l y <- length(y)
sapply(1:(1_ x - 1 y + 1), function(i) {
cor(x[i:(i+l_y-1)]1, y)
9]

<- 10000000 # 10,000,000 ~18h of fs=100Hz 1-dimensional time-series

<- 100
runif (N)
<- runif (n)

KX B =
0

system. time ({
RunningCor.sapply(x, y)
})
user system elapsed . .
4 516.994 2.554 519.946 ~ 8.5 minutes of execution
system. time ({
runstats: :RunningCor (x, y)

3]

user system elapsed

runstats R package

Provides methods for fast computation of running sample statistics for a
time-series.

Implemented running sample statistics:

e mean, standard deviation, and variance over a fixed-length window

of time-series,
e correlation, covariance, and Euclidean distance (L2 norm) between

short-time pattern and time-series.

CRAN index: https://cran.r-project.org/web/packages/runstats/index.html

https://cran.r-project.org/web/packages/runstats/index.html

runstats R package - a comparator example

Dane Van Domelen (personal website)

e accelerometry
o crowdopt

e dvmisc

e nhanesaccel
* nhanesdata
¢ pooling

e tab

o stocks

Former post doc in JHU Biostat

Biostatistician at Karyopharm Therapeutics Inc
Authored a bunch of interesting R packages

R package dvmisc: Convenience Functions,
Moving Window Statistics, and Graphics

o includes sliding cor, sliding cov functions
implemented in rcpp; very fast!

Note:

e Implementation of convolution via convolution theorem + FFT is a
general way that can be used to speed-up convolution in mostly
any language (i.e. Python)

e Nearest future plans for runstats update: search for fastest
FFT implementation | can plug to use in R (perhaps rcpp?)

https://vandomed.github.io/
https://cran.r-project.org/web/packages/dvmisc/index.html

