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About

 Postdoctoral researcher at Onnela Lab
(Harvard University -- Biostatistics)

» Missing data imputation and uncertainty
quantification for sensor data

* Wearable devices and smartphone data
to quantify: (a) ALS disease progression,
(b) behavior patterns in population with
suicidal thoughts

* Formerly: PhD candidate at Wearable and
Implantable Technology (WIT) lab (Johns
Hopkins University -- Biostatistics)

» Accelerometry data

» Power estimation in complex settings




Motivation

« Summary measures of raw accelerometry data
are commonly used in health research’

*  Widely-used: ActiGraph activity counts (AC)

» Until Feb 2022: proprietary measure;
20,000+ works with AC published

» Feb 2022: AC algorithm published?

* Recently, other statistics have been proposed to
aggregate raw data: MIMS, ENMO, MAD, Al3
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ActiGraph | Sum of resampled, bandpass-

AC filtered, rescaled, thresholded,
down-sampled x,, (t); then
aggregated across axes m = 1,2,3

MIMS AUC of interpolated, extrapolated,
bandpass-filtered x,, (t); then
added across axes m = 1,2,3

ENMO Mean of r(t) vector magnitude
from pre-calibrated raw data
[x1 (1), X2 (1), x3(1)]

MAD Mean amplitude deviation of r(t)
vector magnitude

Al Variance of x, (t) at 1 s-level
averaged across axes m = 1,2,3;
summed up at 1 min-level

1: Karas et al. 2019

2: Neishabouri et al., 2022
3: MIMS: John et al., 2019; ENMO: van Hees et al., 2013; MAD: Vaha-Ypya et al.,
2015; Al: Bai et al., 2012




Summary of contributions

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1. Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points



Measures derivation

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1.

Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

Harmonized minute-level AC with other
measures via one-to-one mapping

Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Challenges

» Large volume of raw accelerometry data
needs quality check

« 700 participants x 7 days x 1440 minutes
X 60 seconds x 80 obs./s x 3 sensor axes
=101,606,400,000 (one hundred billion+)

Methods

» Adapted raw data quality flags from recently
published NHANES protocol

+ Implemented flags to detect acceleration
spikes, values at the sensor’s dynamic range

Results

+ Flagged cases of raw measurements
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Measures derivation

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA

sensor

1.  Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,

derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Results (cont.)

« Developed SummarizedActigraphy R
package with unified interface to summarize
raw data at minute-level: AC and open-
source MIMS, ENMO, MAD, Al

¢ SummarizedActigraphy Package:

The goal of SummarizedActigraphy is to provide functions for reading Actigraphy data and turn it into

SummarizedExperiment s.
Installation
You can install SummarizedActigraphy from GitHub with:

# install.packages("remotes")
remotes::install_github("muschellij2/SummarizedActigraphy")

:;;‘-'4' A B
John Muschelli



Measures comparison

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1. Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Methods

» Linear regression with subject-specific
correlation between measures as an outcome

Results

 All correlations between AC and other
measures large (mean r =2 0.87) and especially
MIMS and Al (mean r = 0.97)

 Significant but small of age, sex and BMI

Unadjust. Model adjusted for: age, BMI, sex
model
Sex (is
Intercept | Intercept Age BMI
male)
Coef. est. | Coef. est. | Coef. est. | Coef. est. | Coef. est.
Response var.
(se) (se) (se) (se) (se)
corr 0.988 0.988 <0.001 <0.001 -0.002
(AC, MIMS) (0.0002) (0.0017)| (<0.0001)| (<0.0001)| (0.0005)*
corr 0.867 0.887 -0.001 0.001 >-0.001
(AC, ENMO) (0.0018) (0.0138)| (0.0001)* (0.0004) (0.0037)
corr 0.913 0.892 <0.001 0.001 -0.010
(AC, MAD) (0.0013) (0.0099) (0.0001)| (0.0003)*| (0.0026)*
corr 0.970 0.962 <0.001 <0.001 -0.010
(AC, Al) (0.0007) (0.0050)| (<0.0001)| (0.0001)*| (0.0013)*

Table. "*" symbol is used to denote model coefficients (excluding
intercept) for which the corresponding p-value was <0.05.




Measures harmonization

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1. Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Challenges

» Estimate the relation between pairs of minute-
level measures (x;;(t), yi;(t)) e.g.,
(AC;;(t), MIMS;;(t)) as a smooth function f
while accounting for correlation structure (i-th
participant, j-th day, t-th minute)

» Volume of minute-level data = 700 participants
x 7 days x 1440 minutes = 7,056,000
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Measures harmonization

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1. Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Methods

« Estimated f via additive model
Yij (t) = f(Xij (t)) oE Eijj (t), assuming
independence; 95 % CI via case-bootstrap

« Used f to define one-to-one mapping

Results

Black solid line: f(AC), dashed lines: 95% Cl
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AC cut-offs and mapped values of MIMS, ENMO, MAD, Al

AC MIMS ENMO MAD Al
cut-off fitted fitted  fitted fitted

1 1853  10.558 0.022 0.039 3.620
2 2860  15.047 0.033  0.057 5.273
3 3940 19.614 0.046 0.078 7.025




Measures harmonization

Data from ~700 participants in the Baltimore
Longitudinal Study on Aging (BLSA), each
monitored for a week with a wrist-worn PA
sensor

1. Summarized raw data at minute-level:
ActiGraph AC, MIMS, ENMO, MAD, Al

2. Quantified association between AC and
other measures marginally and conditionally
on age, sex and BMI

3. Harmonized minute-level AC with other
measures via one-to-one mapping

4. Evaluated the harmonization mapping,
derived cut-points of MIMS, ENMO, MAD, Al
that correspond to established AC cut-points

Methods

« Evaluated f in tasks of: (a) estimating total
AC, (b) classifying a minute into active vs non-
active

Results

Mean percentage error (MPE) in estimating total activity
counts (TAC) from MIMS, ENMO, MAD, Al, arranged
according to the participant's average TAC.
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Summary and resources

Summary

« Correlations between minute-level AC and SummarizedActigraphy Package:

Other measures a” Iarge (mean rho > 087), The goal of SummarizedActigraphy is to provide functions for reading Actigraphy data and turn it into
. SummarizedExperiment s.
especially for MIMS and Al (mean rho = 0.97) e

Installation
° Harmonlzatlon mapplng a"OWS tranSIatlon Of You can install SummarizedActigraphy from GitHub with:
established AC cut-offs for separating activity 4 ettt packages (remotest)
IntenSIty Ievels remotes: :install_github("muschellij2/SummarizedActigraphy")
Resources

Computing minute-level summary
measures of physical activity from raw
accelerometry data in R: AC, MIMS,
ENMO, MAD, and Al

Jul 10,2021 - 12 min read

* Open-access paper’, all R code analyses and
results on GitHub?

« SummarizedActigraphy R package?, blog post
demonstrating how to use*.

In this post, we:
« use dataset “Labeled raw accelerometry data captured during walking, stair climbing and
driving” that is freely available on PhysioNet;
« derive four minute-level summary measures of physical activity — AC, MIMS, ENMO, MAD, Al -
from raw accelerometry data using SummarizedActigraphy R package;

« summarize minute-level summary measures across walking and driving activities.

: Karas et al. 2022; https://mhealth.jmir.org/2022/7/e38077

. https://github.com/muschellij2/blsa_mims

. https://github.com/muschellij2/SummarizedActigraphy

. https://martakarass.github.io/post/2021-06-29-pa_measures _and summarizedactigraphy/

A WON-=-



https://mhealth.jmir.org/2022/7/e38077
https://github.com/muschellij2/blsa_mims
https://github.com/muschellij2/SummarizedActigraphy
https://martakarass.github.io/post/2021-06-29-pa_measures_and_summarizedactigraphy/

Considerations for raw accelerometry data
collected with large smartphone studies

Smartphones
+ Broadly adopted and used

+ Allow data collection using one's existing
personal device

“Active data”

» Taking surveys, contributing audio diary
entries, carry out cognitive assessments

“Passive data”

* From smartphone sensors (e.g.,
accelerometer data) and smartphone logs
(e.g., screen activity logs)

« Can be generated by the device passively,
pose no burden on the participant

Smartphone app, a part of the Beiwe research platform
(Harvard University, Onnela Lab) to collect smartphone
sensor and usage data in clinical and non-clinical studies
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R Make a Voice Recording

>

Record Play

R Register

w Survey

Welcome to the research study! How many hours did you sleep last
night?
URL for the study:

studies beiwe.ord

User ID 0 5 10 15
abcd1234 5 Save Call My Clinician

Registration code:

Please press 'Record' and speak
the following sentence into the

Next microphone: ‘The quick brown
fox jumps over the lazy dog!

Join the research study

Straczkiewicz et al. (2021). Overview of standard
smartphone sensors

Accelerometer 4y Light sensor
+ Measures rate of change of velocity along three + Measures ambient light level (illuminance) in
front of the sensor (screen)

+ Output: lux (Ix)

orthogonal axes of smartphone
 Output: gravitational units (g) or meters per

seconds squared (m/s?); positive or negative

depending on the orientation of smartphone

Proximity sensor
* Measures distance between the sensor
(screen) and the closest visible object
* Output: centimeters (cm)

Gyroscope
« Measures angular velocity around three
orthogonal axes of smartphone
+ Output: radians per second (rad/s);
positive or negative depending on the
direction of rotation X

4z

Barometer
* Measures atmospheric pressure

Magnetometer + Output: hectopascal (hPa) or millibar (mbar)

* Measures strength of Earth’s magnetic field relative
to three orthogonal axes of smartphone

« Output: microtesla (uT); positive or negative
depending on the orientation of smartphone

Thermometer
« Measures ambient air temperature
« Output: Celsius (C)

GPS

+ Measures geolocation of smartphone as latitude, v Hygrometer

* Measures ambient relative humidity
* Output: percent (%)

longitude, and altitude coordinates on Earth
« Output: decimal degrees (')



Considerations for raw accelerometry data
collected with large smartphone studies (cont.)

Smartphone monitoring of population self-
injurious thoughts and behaviors

* Intensive longitudinal study:
* ~400 participants

* 6 months of continuous smartphone data
collection

« Smartphone raw accelerometer data

« Collection alternated between 10 sec on-
cycle (data collected) and 10 sec an off-
cycle (data not collected)

+ Summarize raw accelerometer data to
* Quantify movement at minute & day scale
» Tell whether smartphone is with a person

» Help validate other data (e.g., phone
usage patterns at night)



Smartphone monitoring of population self-

Considerations for raw accelerometry data
collected with large smartphone studies (cont.)

injurious thoughts and behaviors

Intensive longitudinal study:
* ~400 participants

* 6 months of continuous smartphone data .
collection

Smartphone raw accelerometer data

« Collection alternated between 10 sec on-
cycle (data collected) and 10 sec an off-
cycle (data not collected)

Summarize raw accelerometer data to
* Quantify movement at minute & day scale
» Tell whether smartphone is with a person

» Help validate other data (e.g., phone
usage patterns at night)

Activity Index (Al; Bai et al., 2012)

Straightforward definition

Fast to compute (does not require extensive
data preprocessing)

Defined on 1 sec-level => can be easily
adopted for our data collected in 10 sec on/off
cycles

Demonstrated high correlation with widely used
ActiGraph AC
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